All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 172309 by mathocean1 last updated on 25/Jun/22
Determinatelimn→+∞(∑k=1n(−1)k+1k)
Commented by mr W last updated on 25/Jun/22
ln(1+x)=∑∞k=1(−1)k+1xkkwithx=1:ln2=∑∞k=1(−1)k+1k
Answered by Mathspace last updated on 25/Jun/22
un=∑k=1n(−1)k−1kandp(x)=∑k=1n(−1)k−1kxkp′(x)=∑k=1n(−1)k−1xk−1=∑k=1n(−x)k−1=∑k=0n−1(−x)k=1−(−x)n1+x⇒p(x)=∫0x1−(−t)n1+t+cc=p(0)=0⇒p(x)=∫0x1−(−t)n1+tdt⇒p(1)=∫01dt1+t−(−1)n∫01tn1+tdtlimn→+∞un=limn→+∞p(1)=ln2−limn→+∞(−1)n∫01tn1+tdt=ln2−0=ln2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com