Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 172352 by Mikenice last updated on 25/Jun/22

Answered by Mathspace last updated on 26/Jun/22

∫_0 ^∞  x^6 e^(−x) cosx dx=Re(∫_0 ^∞ x^6 e^(−x+ix) dx)   and ∫_0 ^∞  x^6 e^(−(1−i)x) dx  =_((1−i)x=t)    ∫_0 ^∞   (t^6 /((1−i)^6 )) e^(−t) (dt/(1−i))  =(1/((1−i)^7 ))∫_0 ^∞  t^(7−1) e^(−t) dt  =(1−i)^(−7) Γ(7)  =((√2)e^(−((iπ)/4)) )^(−7) 6!  =((6!)/(((√2))^7 ))e^(i((7π)/4))  ⇒  ∫_0 ^∞  x^6  e^(−x) cosx dx=((6!)/(((√2))^7 ))cos(((7π)/4))

$$\int_{\mathrm{0}} ^{\infty} \:{x}^{\mathrm{6}} {e}^{−{x}} {cosx}\:{dx}={Re}\left(\int_{\mathrm{0}} ^{\infty} {x}^{\mathrm{6}} {e}^{−{x}+{ix}} {dx}\right)\: \\ $$$${and}\:\int_{\mathrm{0}} ^{\infty} \:{x}^{\mathrm{6}} {e}^{−\left(\mathrm{1}−{i}\right){x}} {dx} \\ $$$$=_{\left(\mathrm{1}−{i}\right){x}={t}} \:\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{\mathrm{6}} }{\left(\mathrm{1}−{i}\right)^{\mathrm{6}} }\:{e}^{−{t}} \frac{{dt}}{\mathrm{1}−{i}} \\ $$$$=\frac{\mathrm{1}}{\left(\mathrm{1}−{i}\right)^{\mathrm{7}} }\int_{\mathrm{0}} ^{\infty} \:{t}^{\mathrm{7}−\mathrm{1}} {e}^{−{t}} {dt} \\ $$$$=\left(\mathrm{1}−{i}\right)^{−\mathrm{7}} \Gamma\left(\mathrm{7}\right) \\ $$$$=\left(\sqrt{\mathrm{2}}{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)^{−\mathrm{7}} \mathrm{6}! \\ $$$$=\frac{\mathrm{6}!}{\left(\sqrt{\mathrm{2}}\right)^{\mathrm{7}} }{e}^{{i}\frac{\mathrm{7}\pi}{\mathrm{4}}} \:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\infty} \:{x}^{\mathrm{6}} \:{e}^{−{x}} {cosx}\:{dx}=\frac{\mathrm{6}!}{\left(\sqrt{\mathrm{2}}\right)^{\mathrm{7}} }{cos}\left(\frac{\mathrm{7}\pi}{\mathrm{4}}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com