Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 172420 by Physicien last updated on 26/Jun/22

Answered by thfchristopher last updated on 26/Jun/22

∫(1/(7+tan x))dx  Let t=tan (x/2)  dt=(1/2)sec^2  xdx  =(1/2)(1+t^2 )dc  ⇒dx=((2dt)/(1+t^2 ))  tan x=((2t)/(1−t^2 )) , sin x=((2t)/(1+t^2 )) , cos x=((1−t^2 )/(1+t^2 ))  ∴ ∫(1/(7+tan x))dx  =∫(((2dt)/(1+t^2 ))/(7+((2t)/(1−t^2 ))))  =∫((2(1−t^2 )dt)/((1+t^2 )(7−7t^2 +2t)))  ((2t^2 −2)/((t^2 +1)(7t^2 −2t−7)))=((At+B)/(t^2 +1))+((Ct+D)/(7t^2 −2t−7))  By solving,  A=−(1/(25)), B=(7/(25)), C=(7/(25)), D=−(1/(25))  ((2t^2 −2)/((t^2 +1)(7t^2 −2t−7)))=(1/(25))(((7−t)/(t^2 +1))+((7t−1)/(7t^2 −2t−7)))  ∫((2(1−t^2 )dt)/((1+t^2 )(7−7t^2 +2t)))  =(1/(25))(∫((7−t)/(t^2 +1))dt+∫((7t−1)/(7t^2 −2t−7))dt)  =(1/(50))[−∫((2t−14)/(t^2 +1))dt−∫((14t−2)/(7t^2 −2t−7))dt]  =(1/(50))[14∫(dt/(t^2 +1))−ln ∣t^2 +1∣+ln ∣7t^2 −2t−7∣]  =(7/(25))tan^(−1) t+(1/(50))ln ∣((7t^2 −2t−7)/(t^2 +1))∣+C  =((7x)/(50))+(1/(50))ln ∣−sin x−7cos x∣+C  =(1/(50))(7x+ln ∣sin x+7cos x∣)+C

$$\int\frac{\mathrm{1}}{\mathrm{7}+\mathrm{tan}\:{x}}{dx} \\ $$$$\mathrm{Let}\:{t}=\mathrm{tan}\:\frac{{x}}{\mathrm{2}} \\ $$$${dt}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sec}^{\mathrm{2}} \:{xdx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+{t}^{\mathrm{2}} \right){dc} \\ $$$$\Rightarrow{dx}=\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$\mathrm{tan}\:{x}=\frac{\mathrm{2}{t}}{\mathrm{1}−{t}^{\mathrm{2}} }\:,\:\mathrm{sin}\:{x}=\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\:,\:\mathrm{cos}\:{x}=\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$\therefore\:\int\frac{\mathrm{1}}{\mathrm{7}+\mathrm{tan}\:{x}}{dx} \\ $$$$=\int\frac{\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }}{\mathrm{7}+\frac{\mathrm{2}{t}}{\mathrm{1}−{t}^{\mathrm{2}} }} \\ $$$$=\int\frac{\mathrm{2}\left(\mathrm{1}−{t}^{\mathrm{2}} \right){dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\left(\mathrm{7}−\mathrm{7}{t}^{\mathrm{2}} +\mathrm{2}{t}\right)} \\ $$$$\frac{\mathrm{2}{t}^{\mathrm{2}} −\mathrm{2}}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)\left(\mathrm{7}{t}^{\mathrm{2}} −\mathrm{2}{t}−\mathrm{7}\right)}=\frac{{At}+{B}}{{t}^{\mathrm{2}} +\mathrm{1}}+\frac{{Ct}+{D}}{\mathrm{7}{t}^{\mathrm{2}} −\mathrm{2}{t}−\mathrm{7}} \\ $$$$\mathrm{By}\:\mathrm{solving}, \\ $$$${A}=−\frac{\mathrm{1}}{\mathrm{25}},\:{B}=\frac{\mathrm{7}}{\mathrm{25}},\:{C}=\frac{\mathrm{7}}{\mathrm{25}},\:{D}=−\frac{\mathrm{1}}{\mathrm{25}} \\ $$$$\frac{\mathrm{2}{t}^{\mathrm{2}} −\mathrm{2}}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)\left(\mathrm{7}{t}^{\mathrm{2}} −\mathrm{2}{t}−\mathrm{7}\right)}=\frac{\mathrm{1}}{\mathrm{25}}\left(\frac{\mathrm{7}−{t}}{{t}^{\mathrm{2}} +\mathrm{1}}+\frac{\mathrm{7}{t}−\mathrm{1}}{\mathrm{7}{t}^{\mathrm{2}} −\mathrm{2}{t}−\mathrm{7}}\right) \\ $$$$\int\frac{\mathrm{2}\left(\mathrm{1}−{t}^{\mathrm{2}} \right){dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\left(\mathrm{7}−\mathrm{7}{t}^{\mathrm{2}} +\mathrm{2}{t}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{25}}\left(\int\frac{\mathrm{7}−{t}}{{t}^{\mathrm{2}} +\mathrm{1}}{dt}+\int\frac{\mathrm{7}{t}−\mathrm{1}}{\mathrm{7}{t}^{\mathrm{2}} −\mathrm{2}{t}−\mathrm{7}}{dt}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{50}}\left[−\int\frac{\mathrm{2}{t}−\mathrm{14}}{{t}^{\mathrm{2}} +\mathrm{1}}{dt}−\int\frac{\mathrm{14}{t}−\mathrm{2}}{\mathrm{7}{t}^{\mathrm{2}} −\mathrm{2}{t}−\mathrm{7}}{dt}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{50}}\left[\mathrm{14}\int\frac{{dt}}{{t}^{\mathrm{2}} +\mathrm{1}}−\mathrm{ln}\:\mid{t}^{\mathrm{2}} +\mathrm{1}\mid+\mathrm{ln}\:\mid\mathrm{7}{t}^{\mathrm{2}} −\mathrm{2}{t}−\mathrm{7}\mid\right] \\ $$$$=\frac{\mathrm{7}}{\mathrm{25}}\mathrm{tan}^{−\mathrm{1}} {t}+\frac{\mathrm{1}}{\mathrm{50}}\mathrm{ln}\:\mid\frac{\mathrm{7}{t}^{\mathrm{2}} −\mathrm{2}{t}−\mathrm{7}}{{t}^{\mathrm{2}} +\mathrm{1}}\mid+{C} \\ $$$$=\frac{\mathrm{7}{x}}{\mathrm{50}}+\frac{\mathrm{1}}{\mathrm{50}}\mathrm{ln}\:\mid−\mathrm{sin}\:{x}−\mathrm{7cos}\:{x}\mid+{C} \\ $$$$=\frac{\mathrm{1}}{\mathrm{50}}\left(\mathrm{7}{x}+\mathrm{ln}\:\mid\mathrm{sin}\:{x}+\mathrm{7cos}\:{x}\mid\right)+{C} \\ $$

Commented by Tawa11 last updated on 26/Jun/22

Great sir.

$$\mathrm{Great}\:\mathrm{sir}. \\ $$

Commented by peter frank last updated on 03/Jul/22

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Answered by MJS_new last updated on 26/Jun/22

∫(dx/(7+tan x))=       [t=tan x → dx=cos^2  x dt=(dt/(t^2 +1))]  =∫(dt/((t+7)(t^2 +1)))=  =(1/(50))∫(dt/(t+7))−(1/(100))∫((2t)/(t^2 +1))dt+(7/(50))∫(dt/(t^2 +1))=  =(1/(50))ln (t+7) −(1/(100))ln (t^2 +1) +(7/(50))arctan t =  =(1/(100))ln (((t+7)^2 )/(t^2 +1)) +(7/(50))arctan t =  =(7/(50))x+(1/(50))ln ∣7cos x +sin x∣ +C

$$\int\frac{{dx}}{\mathrm{7}+\mathrm{tan}\:{x}}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{tan}\:{x}\:\rightarrow\:{dx}=\mathrm{cos}^{\mathrm{2}} \:{x}\:{dt}=\frac{{dt}}{{t}^{\mathrm{2}} +\mathrm{1}}\right] \\ $$$$=\int\frac{{dt}}{\left({t}+\mathrm{7}\right)\left({t}^{\mathrm{2}} +\mathrm{1}\right)}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{50}}\int\frac{{dt}}{{t}+\mathrm{7}}−\frac{\mathrm{1}}{\mathrm{100}}\int\frac{\mathrm{2}{t}}{{t}^{\mathrm{2}} +\mathrm{1}}{dt}+\frac{\mathrm{7}}{\mathrm{50}}\int\frac{{dt}}{{t}^{\mathrm{2}} +\mathrm{1}}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{50}}\mathrm{ln}\:\left({t}+\mathrm{7}\right)\:−\frac{\mathrm{1}}{\mathrm{100}}\mathrm{ln}\:\left({t}^{\mathrm{2}} +\mathrm{1}\right)\:+\frac{\mathrm{7}}{\mathrm{50}}\mathrm{arctan}\:{t}\:= \\ $$$$=\frac{\mathrm{1}}{\mathrm{100}}\mathrm{ln}\:\frac{\left({t}+\mathrm{7}\right)^{\mathrm{2}} }{{t}^{\mathrm{2}} +\mathrm{1}}\:+\frac{\mathrm{7}}{\mathrm{50}}\mathrm{arctan}\:{t}\:= \\ $$$$=\frac{\mathrm{7}}{\mathrm{50}}{x}+\frac{\mathrm{1}}{\mathrm{50}}\mathrm{ln}\:\mid\mathrm{7cos}\:{x}\:+\mathrm{sin}\:{x}\mid\:+{C} \\ $$

Commented by thfchristopher last updated on 26/Jun/22

Your solution is simple than mine. Thanks!

$$\mathrm{Your}\:\mathrm{solution}\:\mathrm{is}\:\mathrm{simple}\:\mathrm{than}\:\mathrm{mine}.\:\mathrm{Thanks}! \\ $$

Commented by MJS_new last updated on 26/Jun/22

in some cases we don′t need t=tan (x/2) because  t=tan x works too. To see this needs just a  little experience.

$$\mathrm{in}\:\mathrm{some}\:\mathrm{cases}\:\mathrm{we}\:\mathrm{don}'\mathrm{t}\:\mathrm{need}\:{t}=\mathrm{tan}\:\frac{{x}}{\mathrm{2}}\:\mathrm{because} \\ $$$${t}=\mathrm{tan}\:{x}\:\mathrm{works}\:\mathrm{too}.\:\mathrm{To}\:\mathrm{see}\:\mathrm{this}\:\mathrm{needs}\:\mathrm{just}\:\mathrm{a} \\ $$$$\mathrm{little}\:\mathrm{experience}. \\ $$

Commented by Tawa11 last updated on 26/Jun/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com