Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 172437 by infinityaction last updated on 26/Jun/22

Answered by mr W last updated on 27/Jun/22

R=radius of semicircle  r=radius of circle  O=center of semicircle  AC=2R cos θ  AN=AM=(r/(tan (θ/2)))  ON=(r/(tan (θ/2)))−R  ((r/(tan (θ/2)))−R)^2 =(R−r)^2 −r^2   (r/(tan^2  (θ/2)))=2R((1/(tan (θ/2)))−1)  ⇒r=2R(1−tan (θ/2))tan (θ/2)  a=2R cos θ−(r/(tan (θ/2)))=2R(cos θ−1+tan (θ/2))  b=2R−(r/(tan (θ/2)))=2R tan (θ/2)  (a/b)=((cos θ−1+tan (θ/2))/(tan (θ/2)))       =1−((1−cos θ)/(tan (θ/2)))       =1−((2 sin^2  (θ/2))/(tan (θ/2)))       =1−2 sin (θ/2) cos (θ/2)       =1−sin θ ✓

R=radiusofsemicircler=radiusofcircleO=centerofsemicircleAC=2RcosθAN=AM=rtanθ2ON=rtanθ2R(rtanθ2R)2=(Rr)2r2rtan2θ2=2R(1tanθ21)r=2R(1tanθ2)tanθ2a=2Rcosθrtanθ2=2R(cosθ1+tanθ2)b=2Rrtanθ2=2Rtanθ2ab=cosθ1+tanθ2tanθ2=11cosθtanθ2=12sin2θ2tanθ2=12sinθ2cosθ2=1sinθ

Commented by infinityaction last updated on 27/Jun/22

thank you sir

thankyousir

Commented by Tawa11 last updated on 27/Jun/22

Great sir

Greatsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com