All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 172564 by Mathspace last updated on 28/Jun/22
find∫01x1−xlnxdx
Answered by Ar Brandon last updated on 28/Jun/22
I=∫01x1−xlnxdx,x=t2=4∫01t21−tlntdt=4∂∂α∣α=3∫01tα−11−tdt=4∂∂α∣α=3β(α,32)=4∂∂α∣α=3Γ(α)Γ(32)Γ(α+32)=2π∂∂α∣α=3Γ(α)Γ(α+32)=2π(Γ′(α)Γ(α+32)−Γ(α)Γ′(α+32)Γ2(α+32))α=3=2π(Γ(3)ψ(3)Γ(92)−Γ(3)Γ(92)ψ(92)Γ2(92))=2π(2(12+1−γ)72⋅52⋅32⋅12⋅π−2(27+25+23+2−γ−2ln2)72⋅52⋅32⋅12⋅π)=32105(3−2γ−704105+2γ+4ln2)=32105(4ln2−389105)
Answered by Mathspace last updated on 29/Jun/22
changementx=tgivex=t2andI=∫01t1−t(2lnt)2tdt=4∫01t2(1−t)12lntdtletf(a)=∫01ta+2(1−t)12dtwehavef′(a)=∫01ta+2(1−t)12lntdt⇒f′(0)=∫01t2(1−t)12lntdt⇒I=4f′(0)wehavef(a)=∫01ta+3−1(1−t)32−1dt=B(a+3,32)=Γ(a+3)Γ(32)Γ(a+3+32)=π2×Γ(a+3)Γ(a+92)⇒f′(a)=π2×Γ′(a+3)Γ(a+92)−Γ(a+3)Γ′(a+92)Γ2(a+92)I=4f′(0)=2π×Γ′(3)Γ(92)−Γ(3)Γ′(92)Γ2(92)afterweuseψ(x)=Γ′(x)Γ(x)⇒Γ′(3)=Γ(3).ψ(3)Γ(3)=2!=2ψ(s)=−γ+∫011−xs−11−xdx⇒ψ(3)=−γ+∫011−x21−xdx=−γ+∫01(1+x)dx=−γ+32Γ′(92)=Γ(92)ψ(92)ψ(92)=−γ+∫011−x721−xdx∫011−x721−xdx=∫011−x3x1−xdx(x=t2)=∫011−t71−t2(2t)dt=2∫01t(1+t+t2+t3+t4+t5+t6)1+tdt=...
Commented by Ar Brandon last updated on 29/Jun/22
ψ(1+s)=1s+ψ(s)ψ(3)=12+1+ψ(1)=32−γψ(92)=27+25+23+2+ψ(12)=352105−γ−2ln2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com