Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 172564 by Mathspace last updated on 28/Jun/22

find ∫_0 ^1 (√x)(√(1−(√x)))lnx dx

find01x1xlnxdx

Answered by Ar Brandon last updated on 28/Jun/22

I=∫_0 ^1 (√x)(√(1−(√x)))lnxdx, x=t^2      =4∫_0 ^1 t^2 (√(1−t))lntdt=4(∂/∂α)∣_(α=3) ∫_0 ^1 t^(α−1) (√(1−t))dt     =4(∂/∂α)∣_(α=3) β(α, (3/2))=4(∂/∂α)∣_(α=3) ((Γ(α)Γ((3/2)))/(Γ(α+(3/2))))     =2(√π)(∂/∂α)∣_(α=3) ((Γ(α))/(Γ(α+(3/2))))=2(√π)(((Γ′(α))/(Γ(α+(3/2))))−((Γ(α)Γ′(α+(3/2)))/(Γ^2 (α+(3/2)))))_(α=3)      =2(√π)(((Γ(3)ψ(3))/(Γ((9/2))))−((Γ(3)Γ((9/2))ψ((9/2)))/(Γ^2 ((9/2)))))     =2(√π)(((2((1/2)+1−γ))/((7/2)∙(5/2)∙(3/2)∙(1/2)∙(√π)))−((2((2/7)+(2/5)+(2/3)+2−γ−2ln2))/((7/2)∙(5/2)∙(3/2)∙(1/2)∙(√π))))     =((32)/(105))(3−2γ−((704)/(105))+2γ+4ln2)=((32)/(105))(4ln2−((389)/(105)))

I=01x1xlnxdx,x=t2=401t21tlntdt=4αα=301tα11tdt=4αα=3β(α,32)=4αα=3Γ(α)Γ(32)Γ(α+32)=2παα=3Γ(α)Γ(α+32)=2π(Γ(α)Γ(α+32)Γ(α)Γ(α+32)Γ2(α+32))α=3=2π(Γ(3)ψ(3)Γ(92)Γ(3)Γ(92)ψ(92)Γ2(92))=2π(2(12+1γ)72523212π2(27+25+23+2γ2ln2)72523212π)=32105(32γ704105+2γ+4ln2)=32105(4ln2389105)

Answered by Mathspace last updated on 29/Jun/22

changement (√x)=t give x=t^2   and I=∫_0 ^1 t(√(1−t))(2lnt)2t dt  =4∫_0 ^1 t^2 (1−t)^(1/2) lnt dt  let f(a)=∫_0 ^1 t^(a+2) (1−t)^(1/2) dt  we have f^′ (a)=∫_0 ^1 t^(a+2) (1−t)^(1/2) lnt dt  ⇒f^′ (0)=∫_0 ^1 t^2 (1−t)^(1/2) lnt dt ⇒  I=4f^′ (0)  we have f(a)=∫_0 ^1 t^(a+3−1) (1−t)^((3/2)−1) dt  =B(a+3,(3/2))=((Γ(a+3)Γ((3/2)))/(Γ(a+3+(3/2))))  =((√π)/2)×((Γ(a+3))/(Γ(a+(9/2)))) ⇒  f^′ (a)=((√π)/2)×((Γ^′ (a+3)Γ(a+(9/2))−Γ(a+3)Γ^′ (a+(9/2)))/(Γ^2 (a+(9/2))))  I=4f^′ (0)=2(√π)×((Γ^′ (3)Γ((9/2))−Γ(3)Γ^′ ((9/2)))/(Γ^2 ((9/2))))  after we use ψ(x)=((Γ^′ (x))/(Γ(x))) ⇒  Γ^′ (3)=Γ(3).ψ(3)  Γ(3)=2!=2  ψ(s)=−γ+∫_0 ^1 ((1−x^(s−1) )/(1−x))dx ⇒  ψ(3)=−γ+∫_0 ^1 ((1−x^2 )/(1−x))dx  =−γ+∫_0 ^1 (1+x)dx=−γ+(3/2)  Γ^′ ((9/2))=Γ((9/2))ψ((9/2))  ψ((9/2))=−γ+∫_0 ^1  ((1−x^(7/2) )/(1−x))dx  ∫_0 ^1  ((1−x^(7/2) )/(1−x))dx    =∫_0 ^1  ((1−x^3 (√x))/(1−x))dx  (x=t^2 )  =∫_0 ^1  ((1−t^7 )/(1−t^2 ))(2t)dt  =2∫_0 ^1 ((t(1+t+t^2 +t^3 +t^4 +t^5 +t^6 ))/(1+t))dt=...

changementx=tgivex=t2andI=01t1t(2lnt)2tdt=401t2(1t)12lntdtletf(a)=01ta+2(1t)12dtwehavef(a)=01ta+2(1t)12lntdtf(0)=01t2(1t)12lntdtI=4f(0)wehavef(a)=01ta+31(1t)321dt=B(a+3,32)=Γ(a+3)Γ(32)Γ(a+3+32)=π2×Γ(a+3)Γ(a+92)f(a)=π2×Γ(a+3)Γ(a+92)Γ(a+3)Γ(a+92)Γ2(a+92)I=4f(0)=2π×Γ(3)Γ(92)Γ(3)Γ(92)Γ2(92)afterweuseψ(x)=Γ(x)Γ(x)Γ(3)=Γ(3).ψ(3)Γ(3)=2!=2ψ(s)=γ+011xs11xdxψ(3)=γ+011x21xdx=γ+01(1+x)dx=γ+32Γ(92)=Γ(92)ψ(92)ψ(92)=γ+011x721xdx011x721xdx=011x3x1xdx(x=t2)=011t71t2(2t)dt=201t(1+t+t2+t3+t4+t5+t6)1+tdt=...

Commented by Ar Brandon last updated on 29/Jun/22

ψ(1+s)=(1/s)+ψ(s)  ψ(3)=(1/2)+1+ψ(1)=(3/2)−γ  ψ((9/2))=(2/7)+(2/5)+(2/3)+2+ψ((1/2))               =((352)/(105))−γ−2ln2

ψ(1+s)=1s+ψ(s)ψ(3)=12+1+ψ(1)=32γψ(92)=27+25+23+2+ψ(12)=352105γ2ln2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com