Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 172681 by mnjuly1970 last updated on 30/Jun/22

Answered by Jamshidbek last updated on 30/Jun/22

Hint: Lemma: ∫_a ^b f(x)dx=∫_a ^b f(a+b−x)dx  after tg(x/2)=t.

Hint:Lemma:abf(x)dx=abf(a+bx)dxaftertgx2=t.

Answered by Mathspace last updated on 30/Jun/22

  f(a)=∫_0 ^(π/4)  (dx/(a+cosx+sinx))  ⇒f^′ (a)=−∫_0 ^(π/4) (dx/((a+cosx+sinx)^2 ))  ⇒∫_0 ^(π/4) (dx/((a+cosx+sinx)^2 ))=−f^′ (a)  ⇒I=−f^′ ((√2))  we take a>1  f(a)=_(tan((x/2))=t)   ∫_0 ^((√2)−1) ((2dt)/((1+t^2 )(a+((1−t^2 )/(1+t^2 ))+((2t)/(1+t^2 )))))

f(a)=0π4dxa+cosx+sinxf(a)=0π4dx(a+cosx+sinx)20π4dx(a+cosx+sinx)2=f(a)I=f(2)wetakea>1f(a)=tan(x2)=t0212dt(1+t2)(a+1t21+t2+2t1+t2)

Commented by Mathspace last updated on 30/Jun/22

f(a)=2∫_0 ^((√2)−1)  (dt/(a+at^2 +1−t^2 +2t))  =2∫_0 ^((√2)−1) (dt/((a−1)t^2 +2t +a+1))  Δ^′ =1−(a^2 −1)=2−a^2   t_1 =((−1+(√(2−a^2 )))/(a−1))  t_2 =((−1−(√(2−a^2 )))/(a−1)) ⇒  f(a)=2∫_0 ^((√2)−1) (dt/((a−1)(t−t_1 )(t−t_2 )))  =(2/(a−1))×((2(√(2−a^2 )))/(a−1))∫_0 ^((√2)−1) ((1/(t−t_1 ))−(1/(t−t_2 )))dt  =((4(√(2−a^2 )))/((a−1)^2 ))[ln∣((t−t_1 )/(t−t_2 ))∣]_0 ^((√2)−1)   =((4(√(2−a^2 )))/((a−1)^2 )){ln∣(((√2)−1−t_1 )/( (√2)−1−t_2 ))∣+ln∣(t_2 /t_1 )∣}  rest to calculate f^′ (a)...be continued...

f(a)=2021dta+at2+1t2+2t=2021dt(a1)t2+2t+a+1Δ=1(a21)=2a2t1=1+2a2a1t2=12a2a1f(a)=2021dt(a1)(tt1)(tt2)=2a1×22a2a1021(1tt11tt2)dt=42a2(a1)2[lntt1tt2]021=42a2(a1)2{ln21t121t2+lnt2t1}resttocalculatef(a)...becontinued...

Answered by Mathspace last updated on 30/Jun/22

Φ=∫_0 ^(π/4) (dx/(((√2)+(√2)cos(x−(π/4)))^2 ))  =(1/2)∫_0 ^(π/4) (dx/((1+cos(x−(π/4)))^2 ))  =_(x−(π/4)=−t)   (1/2)∫_(π/4) ^o ((−dt)/((1+cost)^2 ))  =(1/2)∫_0 ^(π/4)   (dt/((1+cost)^2 ))  (tan((t/2))=y)  =(1/2)∫_0 ^((√2)−1) ((2dy)/((y^2 +1)(1+((1−y^2 )/(1+y^2 )))^2 ))  =∫_0 ^((√2)−1)  (dy/((y^2 +1)((2/(1+y^2 )))^2 ))  =∫_0 ^((√2)−1) ((1+y^2 )/4)dy  =(1/4)((√2)−1)+(1/(12))[y^3 ]_0 ^((√2)−1)   =(((√2)−1)/4)+((((√2)−1)^3 )/(12))

Φ=0π4dx(2+2cos(xπ4))2=120π4dx(1+cos(xπ4))2=xπ4=t12π4odt(1+cost)2=120π4dt(1+cost)2(tan(t2)=y)=120212dy(y2+1)(1+1y21+y2)2=021dy(y2+1)(21+y2)2=0211+y24dy=14(21)+112[y3]021=214+(21)312

Commented by Tawa11 last updated on 01/Jul/22

Great sir

Greatsir

Answered by mr W last updated on 30/Jun/22

cos x+sin x=(√2) cos (x−(π/4))  Ω=∫_0 ^(π/4) ((d(x−(π/4)))/(2(1+cos (x−(π/4)))^2 ))  Ω=∫_(−(π/4)) ^0 (dt/(2(1+cos t)^2 ))  Ω=(1/4)∫_(−(π/4)) ^0 ((d((t/2)))/(cos^4  ((t/2))))  Ω=(1/4)∫_(−(π/8)) ^0 (du/(cos^4 u))  Ω=(1/4)[tan u+((tan^3  u)/3)]_(−(π/8)) ^0   Ω=(1/4)tan (π/8)(1+(1/3)×tan^2  (π/8))  Ω=(((√2)−1)/4)(1+((((√2)−1)^2 )/3))=((4(√2)−5)/6) ✓    tan (π/4)=((2tan (π/8))/(1−tan^2  (π/8)))=1  ⇒tan (π/8)=(√2)−1

cosx+sinx=2cos(xπ4)Ω=0π4d(xπ4)2(1+cos(xπ4))2Ω=π40dt2(1+cost)2Ω=14π40d(t2)cos4(t2)Ω=14π80ducos4uΩ=14[tanu+tan3u3]π80Ω=14tanπ8(1+13×tan2π8)Ω=214(1+(21)23)=4256tanπ4=2tanπ81tan2π8=1tanπ8=21

Commented by Tawa11 last updated on 01/Jul/22

Great sir

Greatsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com