Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 172775 by Shrinava last updated on 01/Jul/22

Answered by mahdipoor last updated on 02/Jul/22

get side of square = a  and cotB+cotC=b  ,  BQ=MQ.cotB=a.cotB  PC=NP.cotC=a.cotC  BC=BQ+QP+PC=a(1+cotB+cotC)   { ((((AM)/(AB))=((MN)/(BC))=(1/(1+cotB+cotC)))),((AM=AB−MB=AB−MQ.cscB=AB−a.cscB)) :}  ⇒AB=((1+cotB+cotC)/(cotB+cotC))×a.cscB  S(□)=a^2   S(Δ)=((AB.BC.sinB)/2)=(a^2 /2)((((1+cotB+cotC)^2 )/(cotB+cotC)))  =(a^2 /2)((1/b)+2+b) ⇒ (1/b)+b≥2 ⇒  S(Δ)≥2a^2   ⇒S(□)≤0.5×S(Δ)

$${get}\:{side}\:{of}\:{square}\:=\:{a} \\ $$$${and}\:{cotB}+{cotC}={b} \\ $$$$, \\ $$$${BQ}={MQ}.{cotB}={a}.{cotB} \\ $$$${PC}={NP}.{cotC}={a}.{cotC} \\ $$$${BC}={BQ}+{QP}+{PC}={a}\left(\mathrm{1}+{cotB}+{cotC}\right) \\ $$$$\begin{cases}{\frac{{AM}}{{AB}}=\frac{{MN}}{{BC}}=\frac{\mathrm{1}}{\mathrm{1}+{cotB}+{cotC}}}\\{{AM}={AB}−{MB}={AB}−{MQ}.{cscB}={AB}−{a}.{cscB}}\end{cases} \\ $$$$\Rightarrow{AB}=\frac{\mathrm{1}+{cotB}+{cotC}}{{cotB}+{cotC}}×{a}.{cscB} \\ $$$${S}\left(\Box\right)={a}^{\mathrm{2}} \\ $$$${S}\left(\Delta\right)=\frac{{AB}.{BC}.{sinB}}{\mathrm{2}}=\frac{{a}^{\mathrm{2}} }{\mathrm{2}}\left(\frac{\left(\mathrm{1}+{cotB}+{cotC}\right)^{\mathrm{2}} }{{cotB}+{cotC}}\right) \\ $$$$=\frac{{a}^{\mathrm{2}} }{\mathrm{2}}\left(\frac{\mathrm{1}}{{b}}+\mathrm{2}+{b}\right)\:\Rightarrow\:\frac{\mathrm{1}}{{b}}+{b}\geqslant\mathrm{2}\:\Rightarrow \\ $$$${S}\left(\Delta\right)\geqslant\mathrm{2}{a}^{\mathrm{2}} \\ $$$$\Rightarrow{S}\left(\Box\right)\leqslant\mathrm{0}.\mathrm{5}×{S}\left(\Delta\right) \\ $$

Answered by aleks041103 last updated on 01/Jul/22

let MN=xBC  MN∥QP≡BC⇒△AMN∼△ABC  ⇒h_(MN) =xh_(BC)   But h_(MN) =h_(BC) −MN=h_(BC) −xBC  ⇒xBC=(1−x)h_(BC)   ⇒(x/(1−x))=(h_(BC) /(BC))= ((2S_(ABC) )/(BC^2 ))=((2x^2 S_(ABC) )/((xBC)^2 ))=((2x^2 S_(ABC) )/(MN^2 ))  ⇒S_(MNPQ) =((2x^2 (1−x))/x)S_(ABC) =2x(1−x)S_(ABC)   geometrically x∈(0,1)  2x(x−1) is a quadratic with max at x=(1/2)∈(0,1)  ⇒S_(MNPQ) ≤2((1/2))(1−(1/2))S_(ABC)   ⇒S_(MNPQ) ≤(1/2)S_(ABC)

$${let}\:{MN}={xBC} \\ $$$${MN}\parallel{QP}\equiv{BC}\Rightarrow\bigtriangleup{AMN}\sim\bigtriangleup{ABC} \\ $$$$\Rightarrow{h}_{{MN}} ={xh}_{{BC}} \\ $$$${But}\:{h}_{{MN}} ={h}_{{BC}} −{MN}={h}_{{BC}} −{xBC} \\ $$$$\Rightarrow{xBC}=\left(\mathrm{1}−{x}\right){h}_{{BC}} \\ $$$$\Rightarrow\frac{{x}}{\mathrm{1}−{x}}=\frac{{h}_{{BC}} }{{BC}}=\:\frac{\mathrm{2}{S}_{{ABC}} }{{BC}^{\mathrm{2}} }=\frac{\mathrm{2}{x}^{\mathrm{2}} {S}_{{ABC}} }{\left({xBC}\right)^{\mathrm{2}} }=\frac{\mathrm{2}{x}^{\mathrm{2}} {S}_{{ABC}} }{{MN}^{\mathrm{2}} } \\ $$$$\Rightarrow{S}_{{MNPQ}} =\frac{\mathrm{2}{x}^{\mathrm{2}} \left(\mathrm{1}−{x}\right)}{{x}}{S}_{{ABC}} =\mathrm{2}{x}\left(\mathrm{1}−{x}\right){S}_{{ABC}} \\ $$$${geometrically}\:{x}\in\left(\mathrm{0},\mathrm{1}\right) \\ $$$$\mathrm{2}{x}\left({x}−\mathrm{1}\right)\:{is}\:{a}\:{quadratic}\:{with}\:{max}\:{at}\:{x}=\frac{\mathrm{1}}{\mathrm{2}}\in\left(\mathrm{0},\mathrm{1}\right) \\ $$$$\Rightarrow{S}_{{MNPQ}} \leqslant\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\right){S}_{{ABC}} \\ $$$$\Rightarrow{S}_{{MNPQ}} \leqslant\frac{\mathrm{1}}{\mathrm{2}}{S}_{{ABC}} \\ $$

Commented by aleks041103 last updated on 01/Jul/22

eqiality at x=(1/2)  ⇒h_(BC) =BC×(x/(1−x))=BC  ⇒Equality at h_(BC) =BC

$${eqiality}\:{at}\:{x}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow{h}_{{BC}} ={BC}×\frac{{x}}{\mathrm{1}−{x}}={BC} \\ $$$$\Rightarrow{Equality}\:{at}\:{h}_{{BC}} ={BC} \\ $$

Commented by Shrinava last updated on 02/Jul/22

Cool professor than you

$$\mathrm{Cool}\:\mathrm{professor}\:\mathrm{than}\:\mathrm{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com