Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 172996 by Mathspace last updated on 04/Jul/22

let U_n =∫_0 ^1 (√(1−x^n ))ln^2 xdx  1)lim U_n ?  2)equivalent of U_n (n→∞)

$${let}\:{U}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}−{x}^{{n}} }{ln}^{\mathrm{2}} {xdx} \\ $$$$\left.\mathrm{1}\right){lim}\:{U}_{{n}} ? \\ $$$$\left.\mathrm{2}\right){equivalent}\:{of}\:{U}_{{n}} \left({n}\rightarrow\infty\right) \\ $$

Answered by aleks041103 last updated on 05/Jul/22

U_n =∫_0 ^1 (√(1−x^n ))ln^2 x dx⇒x∈(0,1)  ⇒lim_(n→∞) x^n =0  ⇒lim_(n→∞) U_n =∫_0 ^1 (√(1−0))ln^2 xdx=∫_0 ^1 ln^2 x dx  x=e^(−t) ,x∈(0,1)⇒t∈(∞,0)⇒dx=−e^(−t) dt  ∫_0 ^1 ln^2 x dx=∫_∞ ^( 0) ln^2 (e^(−t) )(−e^t dt)=  =∫_0 ^∞ t^2 e^(−t) dt=2  ⇒lim_(n→∞) U_n =2

$${U}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}−{x}^{{n}} }{ln}^{\mathrm{2}} {x}\:{dx}\Rightarrow{x}\in\left(\mathrm{0},\mathrm{1}\right) \\ $$$$\Rightarrow\underset{{n}\rightarrow\infty} {{lim}x}^{{n}} =\mathrm{0} \\ $$$$\Rightarrow\underset{{n}\rightarrow\infty} {{lim}U}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}−\mathrm{0}}{ln}^{\mathrm{2}} {xdx}=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}^{\mathrm{2}} {x}\:{dx} \\ $$$${x}={e}^{−{t}} ,{x}\in\left(\mathrm{0},\mathrm{1}\right)\Rightarrow{t}\in\left(\infty,\mathrm{0}\right)\Rightarrow{dx}=−{e}^{−{t}} {dt} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {ln}^{\mathrm{2}} {x}\:{dx}=\int_{\infty} ^{\:\mathrm{0}} {ln}^{\mathrm{2}} \left({e}^{−{t}} \right)\left(−{e}^{{t}} {dt}\right)= \\ $$$$=\int_{\mathrm{0}} ^{\infty} {t}^{\mathrm{2}} {e}^{−{t}} {dt}=\mathrm{2} \\ $$$$\Rightarrow\underset{{n}\rightarrow\infty} {{lim}U}_{{n}} =\mathrm{2} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com