Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 17302 by ajfour last updated on 03/Jul/17

Find the length of     ρ=a(1−cos θ) .   ρ=(√(x^2 +y^2 ))  ,  θ=tan^(−1) ((y/x)) .

Findthelengthofρ=a(1cosθ).ρ=x2+y2,θ=tan1(yx).

Commented by ajfour last updated on 03/Jul/17

it is a cardioid, Sir.   easy question sir, not perhaps  for you..My Answer :  s=8a   ds=(√(ρ^2 +((dρ/dθ))^2 )) dθ .  Book′s answer: not given .

itisacardioid,Sir.easyquestionsir,notperhapsforyou..MyAnswer:s=8ads=ρ2+(dρdθ)2dθ.Booksanswer:notgiven.

Commented by mrW1 last updated on 03/Jul/17

you are right sir!

youarerightsir!

Answered by mrW1 last updated on 03/Jul/17

dL=(√((dρ)^2 +(ρdθ)^2 ))=(√(ρ^2 +((dρ/dθ))^2 )) dθ  (dρ/dθ)=asin θ  ρ^2 +((dρ/dθ))^2 =a^2 [(1−cos θ)^2 +sin^2  θ]  =2a^2 [1−cos θ]=4a^2 sin^2  (θ/2)  L=2×2a∫_0 ^π sin (θ/2) dθ  L=8a∫_0 ^π sin (θ/2) d(θ/2)  L=8a[−cos (θ/2)]_0 ^π =8a

dL=(dρ)2+(ρdθ)2=ρ2+(dρdθ)2dθdρdθ=asinθρ2+(dρdθ)2=a2[(1cosθ)2+sin2θ]=2a2[1cosθ]=4a2sin2θ2L=2×2a0πsinθ2dθL=8a0πsinθ2dθ2L=8a[cosθ2]0π=8a

Commented by ajfour last updated on 03/Jul/17

yes sir, thanks for confirming.

yessir,thanksforconfirming.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com