Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 173026 by mnjuly1970 last updated on 05/Jul/22

Answered by mr W last updated on 05/Jul/22

Commented by mr W last updated on 05/Jul/22

b=r_2 +(r_2 /(tan ((π−β−γ)/2)))=r_2 (1+tan ((β+γ)/2))  r_2 =(b/(1+tan ((β+γ)/2)))  similarly  r_1 =(a/(1+tan ((α+δ)/2)))  β+γ=π−(α+δ)  tan ((β+γ)/2)=tan ((π/2)−((α+δ)/2))=(1/(tan ((α+δ)/2)))  r_1 +r_2 =(b/(1+(1/(tan ((α+δ)/2)))))+(a/(1+tan ((α+δ)/2)))  r_1 +r_2 =((a+b tan ((α+δ)/2))/(1+tan ((α+δ)/2)))  r_1 +r_2 =((g(cos α+sin α tan ((α+δ)/2)))/(1+tan ((α+δ)/2)))  r_1 +r_2 =((g cos ((α−δ)/2))/((1+tan ((α+δ)/2))cos ((α+δ)/2)))  similarly  r_3 +r_4 =((c+d tan ((β+γ)/2))/(1+tan ((β+γ)/2)))  r_3 +r_4 =((d+c tan ((α+δ)/2))/(1+tan ((α+δ)/2)))  r_3 +r_4 =((g(cos δ+sin δ tan ((α+δ)/2)))/(1+tan ((α+δ)/2)))  r_3 +r_4 =((g cos  ((δ−α)/2))/((1+tan ((α+δ)/2))cos ((α+δ)/2)))  r_3 +r_4 =((g cos  ((α−δ)/2))/((1+tan ((α+δ)/2))cos ((α+δ)/2)))=r_1 +r_2  ✓

$${b}={r}_{\mathrm{2}} +\frac{{r}_{\mathrm{2}} }{\mathrm{tan}\:\frac{\pi−\beta−\gamma}{\mathrm{2}}}={r}_{\mathrm{2}} \left(\mathrm{1}+\mathrm{tan}\:\frac{\beta+\gamma}{\mathrm{2}}\right) \\ $$$${r}_{\mathrm{2}} =\frac{{b}}{\mathrm{1}+\mathrm{tan}\:\frac{\beta+\gamma}{\mathrm{2}}} \\ $$$${similarly} \\ $$$${r}_{\mathrm{1}} =\frac{{a}}{\mathrm{1}+\mathrm{tan}\:\frac{\alpha+\delta}{\mathrm{2}}} \\ $$$$\beta+\gamma=\pi−\left(\alpha+\delta\right) \\ $$$$\mathrm{tan}\:\frac{\beta+\gamma}{\mathrm{2}}=\mathrm{tan}\:\left(\frac{\pi}{\mathrm{2}}−\frac{\alpha+\delta}{\mathrm{2}}\right)=\frac{\mathrm{1}}{\mathrm{tan}\:\frac{\alpha+\delta}{\mathrm{2}}} \\ $$$${r}_{\mathrm{1}} +{r}_{\mathrm{2}} =\frac{{b}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{tan}\:\frac{\alpha+\delta}{\mathrm{2}}}}+\frac{{a}}{\mathrm{1}+\mathrm{tan}\:\frac{\alpha+\delta}{\mathrm{2}}} \\ $$$${r}_{\mathrm{1}} +{r}_{\mathrm{2}} =\frac{{a}+{b}\:\mathrm{tan}\:\frac{\alpha+\delta}{\mathrm{2}}}{\mathrm{1}+\mathrm{tan}\:\frac{\alpha+\delta}{\mathrm{2}}} \\ $$$${r}_{\mathrm{1}} +{r}_{\mathrm{2}} =\frac{{g}\left(\mathrm{cos}\:\alpha+\mathrm{sin}\:\alpha\:\mathrm{tan}\:\frac{\alpha+\delta}{\mathrm{2}}\right)}{\mathrm{1}+\mathrm{tan}\:\frac{\alpha+\delta}{\mathrm{2}}} \\ $$$${r}_{\mathrm{1}} +{r}_{\mathrm{2}} =\frac{{g}\:\mathrm{cos}\:\frac{\alpha−\delta}{\mathrm{2}}}{\left(\mathrm{1}+\mathrm{tan}\:\frac{\alpha+\delta}{\mathrm{2}}\right)\mathrm{cos}\:\frac{\alpha+\delta}{\mathrm{2}}} \\ $$$${similarly} \\ $$$${r}_{\mathrm{3}} +{r}_{\mathrm{4}} =\frac{{c}+{d}\:\mathrm{tan}\:\frac{\beta+\gamma}{\mathrm{2}}}{\mathrm{1}+\mathrm{tan}\:\frac{\beta+\gamma}{\mathrm{2}}} \\ $$$${r}_{\mathrm{3}} +{r}_{\mathrm{4}} =\frac{{d}+{c}\:\mathrm{tan}\:\frac{\alpha+\delta}{\mathrm{2}}}{\mathrm{1}+\mathrm{tan}\:\frac{\alpha+\delta}{\mathrm{2}}} \\ $$$${r}_{\mathrm{3}} +{r}_{\mathrm{4}} =\frac{{g}\left(\mathrm{cos}\:\delta+\mathrm{sin}\:\delta\:\mathrm{tan}\:\frac{\alpha+\delta}{\mathrm{2}}\right)}{\mathrm{1}+\mathrm{tan}\:\frac{\alpha+\delta}{\mathrm{2}}} \\ $$$${r}_{\mathrm{3}} +{r}_{\mathrm{4}} =\frac{{g}\:\mathrm{cos}\:\:\frac{\delta−\alpha}{\mathrm{2}}}{\left(\mathrm{1}+\mathrm{tan}\:\frac{\alpha+\delta}{\mathrm{2}}\right)\mathrm{cos}\:\frac{\alpha+\delta}{\mathrm{2}}} \\ $$$${r}_{\mathrm{3}} +{r}_{\mathrm{4}} =\frac{{g}\:\mathrm{cos}\:\:\frac{\alpha−\delta}{\mathrm{2}}}{\left(\mathrm{1}+\mathrm{tan}\:\frac{\alpha+\delta}{\mathrm{2}}\right)\mathrm{cos}\:\frac{\alpha+\delta}{\mathrm{2}}}={r}_{\mathrm{1}} +{r}_{\mathrm{2}} \:\checkmark \\ $$

Commented by Tawa11 last updated on 06/Jul/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com