Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 173033 by cortano1 last updated on 05/Jul/22

Answered by greougoury555 last updated on 05/Jul/22

 f ′(x)= cos x−sin x −((4k cos 2x)/(sin^2 2x)) =0   (cos x−sin x)(1−((4k(cos x+sin x))/(sin^2 2x)))=0  (°) tan x=1⇒f =(√2) +2k   (°°) 1 =((4k(cos x+sin x))/(sin^2 2x))   (cos x+sin x)^2 −sin 2x = ((4k(cos x+sin x))/(sin^2 2x))   { ((cos x+sin x=u)),((sin 2x = v)) :}   u^2 −v = ((4ku)/v^2 ) ; (uv)^2 −v^3  = 4ku

$$\:{f}\:'\left({x}\right)=\:\mathrm{cos}\:{x}−\mathrm{sin}\:{x}\:−\frac{\mathrm{4}{k}\:\mathrm{cos}\:\mathrm{2}{x}}{\mathrm{sin}\:^{\mathrm{2}} \mathrm{2}{x}}\:=\mathrm{0} \\ $$$$\:\left(\mathrm{cos}\:{x}−\mathrm{sin}\:{x}\right)\left(\mathrm{1}−\frac{\mathrm{4}{k}\left(\mathrm{cos}\:{x}+\mathrm{sin}\:{x}\right)}{\mathrm{sin}\:^{\mathrm{2}} \mathrm{2}{x}}\right)=\mathrm{0} \\ $$$$\left(°\right)\:\mathrm{tan}\:{x}=\mathrm{1}\Rightarrow{f}\:=\sqrt{\mathrm{2}}\:+\mathrm{2}{k}\: \\ $$$$\left(°°\right)\:\mathrm{1}\:=\frac{\mathrm{4}{k}\left(\mathrm{cos}\:{x}+\mathrm{sin}\:{x}\right)}{\mathrm{sin}\:^{\mathrm{2}} \mathrm{2}{x}} \\ $$$$\:\left(\mathrm{cos}\:{x}+\mathrm{sin}\:{x}\right)^{\mathrm{2}} −\mathrm{sin}\:\mathrm{2}{x}\:=\:\frac{\mathrm{4}{k}\left(\mathrm{cos}\:{x}+\mathrm{sin}\:{x}\right)}{\mathrm{sin}\:^{\mathrm{2}} \mathrm{2}{x}} \\ $$$$\begin{cases}{\mathrm{cos}\:{x}+\mathrm{sin}\:{x}={u}}\\{\mathrm{sin}\:\mathrm{2}{x}\:=\:{v}}\end{cases} \\ $$$$\:{u}^{\mathrm{2}} −{v}\:=\:\frac{\mathrm{4}{ku}}{{v}^{\mathrm{2}} }\:;\:\left({uv}\right)^{\mathrm{2}} −{v}^{\mathrm{3}} \:=\:\mathrm{4}{ku} \\ $$$$ \\ $$

Answered by a.lgnaoui last updated on 05/Jul/22

f(x)=sin x+cos x+((2k)/(sin 2x))  limf(x)_(x→0) =1+(1/x)lim_(x→0) ((2x)/(sin 2x))k=1+(k/x)  if k>0      f→+∞;    if k<0   f→−∞  lim_(x→(π/2)) f(x)=1+lim_(x→(π/2)) ((2k)/(sin 2x))=+∞   if k>0  or −∞  if k<0  donc f decroissant et criissant  si k>0 et contraire  pour k>0  f′(x)=cos x−sin x−k((cos^2 x−sin^2 x)/(sin^2 xcos^2 x))=(cos x−sin x)[1−k((1/(cos x))+(1/(sin x)))]  remarque x=(π/4) ⇒f′(x)=0   donc (π/4) is minimum of f(x).

$${f}\left({x}\right)=\mathrm{sin}\:{x}+\mathrm{cos}\:{x}+\frac{\mathrm{2}{k}}{\mathrm{sin}\:\mathrm{2}{x}} \\ $$$${limf}\left({x}\right)_{{x}\rightarrow\mathrm{0}} =\mathrm{1}+\frac{\mathrm{1}}{{x}}{lim}_{{x}\rightarrow\mathrm{0}} \frac{\mathrm{2}{x}}{\mathrm{sin}\:\mathrm{2}{x}}{k}=\mathrm{1}+\frac{{k}}{{x}} \\ $$$${if}\:{k}>\mathrm{0}\:\:\:\:\:\:{f}\rightarrow+\infty;\:\:\:\:{if}\:{k}<\mathrm{0}\:\:\:{f}\rightarrow−\infty \\ $$$${lim}_{{x}\rightarrow\frac{\pi}{\mathrm{2}}} {f}\left({x}\right)=\mathrm{1}+{lim}_{{x}\rightarrow\frac{\pi}{\mathrm{2}}} \frac{\mathrm{2}{k}}{\mathrm{sin}\:\mathrm{2}{x}}=+\infty\:\:\:{if}\:{k}>\mathrm{0}\:\:{or}\:−\infty\:\:{if}\:{k}<\mathrm{0} \\ $$$${donc}\:{f}\:{decroissant}\:{et}\:{criissant}\:\:{si}\:{k}>\mathrm{0}\:{et}\:{contraire}\:\:{pour}\:{k}>\mathrm{0} \\ $$$${f}'\left({x}\right)=\mathrm{cos}\:{x}−\mathrm{sin}\:{x}−{k}\frac{\mathrm{cos}\:^{\mathrm{2}} {x}−\mathrm{sin}\:^{\mathrm{2}} {x}}{\mathrm{sin}\:^{\mathrm{2}} {x}\mathrm{cos}\:^{\mathrm{2}} {x}}=\left(\mathrm{cos}\:{x}−\mathrm{sin}\:{x}\right)\left[\mathrm{1}−{k}\left(\frac{\mathrm{1}}{\mathrm{cos}\:{x}}+\frac{\mathrm{1}}{\mathrm{sin}\:{x}}\right)\right] \\ $$$${remarque}\:{x}=\frac{\pi}{\mathrm{4}}\:\Rightarrow{f}'\left({x}\right)=\mathrm{0}\:\:\:{donc}\:\frac{\pi}{\mathrm{4}}\:{is}\:{minimum}\:{of}\:{f}\left({x}\right). \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com