Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 173051 by mr W last updated on 05/Jul/22

solve  (x−2)(x−3)(x−4)(x−6)=5x^2

solve(x2)(x3)(x4)(x6)=5x2

Answered by dragan91 last updated on 06/Jul/22

(x^2 −8x+12)(x^2 −7x+12)−5x^2 =0  (x^2 −8x+12)((x^2 −8x+12)+x)−5(x^2 =0  (x^2 −8x+12)^2 +2(x/2)(x^2 −8x+12)+(x^2 /4)−((21x^2 )/4)=0  (x^2 −8x+12+(x/2))^2 =(((x(√(21)))/2))^2   2x^2 −15x+24=∓x(√(21))  x_1 ≈1,4363  x_2 ≈8,3550  x_(3,4) ≈2,6044∓2,2841i

(x28x+12)(x27x+12)5x2=0(x28x+12)((x28x+12)+x)5(x2=0(x28x+12)2+2x2(x28x+12)+x2421x24=0(x28x+12+x2)2=(x212)22x215x+24=x21x11,4363x28,3550x3,42,60442,2841i

Answered by MJS_new last updated on 06/Jul/22

we have to solve the 4^(th)  degree the usual way  I get  x_(1, 2) =((15+(√(21))±(√(6(9+5(√(21))))))/4)  x_(3, 4) =((15−(√(21)))/4)±((√(6(−9+5(√(21)))))/4)i

wehavetosolvethe4thdegreetheusualwayIgetx1,2=15+21±6(9+521)4x3,4=15214±6(9+521)4i

Commented by mr W last updated on 06/Jul/22

thanks sirs!

thankssirs!

Commented by dragan91 last updated on 06/Jul/22

yes.I have same but used aproximate solutions

yes.Ihavesamebutusedaproximatesolutions

Commented by mr W last updated on 06/Jul/22

yes. you both are right sirs.

yes.youbotharerightsirs.

Answered by mr W last updated on 06/Jul/22

(x−2)(x−6)(x−3)(x−4)=5x^2   (x^2 −8x+12)(x^2 −7x+12)=5x^2   (x+((12)/x)−8)(x+((12)/x)−7)=5  let u=x+((12)/x) ≥2(√(12))=4(√2) or ≤−4(√2)  (u−8)(u−7)=5  u^2 −15u+51=0  u=((15+(√(21)))/2)      (((15−(√(21)))/2)<4(√2) ⇒rejected)  x+((12)/x)=u=((15+(√(21)))/2)  x^2 −ux+12=0  x=(1/2)(u±(√(u^2 −48)))  x=(1/2)(u±(√(15u−99)))  x=(1/2)(((15+(√(21)))/2)±(√(15×((15+(√(21)))/2)−99)))  ⇒x=((15+(√(21))±(√(6(9+5(√(31))))))/4) ✓

(x2)(x6)(x3)(x4)=5x2(x28x+12)(x27x+12)=5x2(x+12x8)(x+12x7)=5letu=x+12x212=42or42(u8)(u7)=5u215u+51=0u=15+212(15212<42rejected)x+12x=u=15+212x2ux+12=0x=12(u±u248)x=12(u±15u99)x=12(15+212±15×15+21299)x=15+21±6(9+531)4

Commented by Tawa11 last updated on 06/Jul/22

Great sir

Greatsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com