Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 173068 by mnjuly1970 last updated on 06/Jul/22

Answered by Mathspace last updated on 06/Jul/22

Φ=∫_0 ^∞ (∫_0 ^∞ e^(−x) sin(x+y)dx)e^(−y) dy  but ∫_0 ^∞  e^(−x) sin(x+y)dx  =Im(∫_0 ^∞ e^(−x+i(x+y)) dx)and  ∫_0 ^∞  e^(−x+i(x+y)) dx  =e^(iy) ∫_0 ^∞  e^((−1+i)x) dx  =e^(iy) [(1/(−1+i))e^((−1+i)x) ]_0 ^∞   =e^(iy) (−(1/(−1+i)))=(e^(ih) /(1−i))  =(((1+i)e^(iy) )/2)=(((1+i)(cosy+isiny))/2)  =(1/2){cosy+isiny+icosy−siny}  ⇒Im(...)=(1/2)(cosy+siny)⇒  Φ=∫_0 ^∞ (1/2)(cosy+siny)e^(−y) dy  2Φ=Re(∫_0 ^∞  e^(−y+iy) dy)+Im(∫_0 ^∞ e^(−y+iy) dy)  or  ∫_0 ^∞   e^((−1+i)y) dy  =[(1/(−1+i))e^((−1+i)y) ]_0 ^∞ =(1/(1−i))  =((1+i)/2) ⇒Re(....)=(1/2)  and Im(...)=(1/2) ⇒  2Φ=1 ⇒Φ=(1/2)

$$\Phi=\int_{\mathrm{0}} ^{\infty} \left(\int_{\mathrm{0}} ^{\infty} {e}^{−{x}} {sin}\left({x}+{y}\right){dx}\right){e}^{−{y}} {dy} \\ $$$${but}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}} {sin}\left({x}+{y}\right){dx} \\ $$$$={Im}\left(\int_{\mathrm{0}} ^{\infty} {e}^{−{x}+{i}\left({x}+{y}\right)} {dx}\right){and} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}+{i}\left({x}+{y}\right)} {dx} \\ $$$$={e}^{{iy}} \int_{\mathrm{0}} ^{\infty} \:{e}^{\left(−\mathrm{1}+{i}\right){x}} {dx} \\ $$$$={e}^{{iy}} \left[\frac{\mathrm{1}}{−\mathrm{1}+{i}}{e}^{\left(−\mathrm{1}+{i}\right){x}} \right]_{\mathrm{0}} ^{\infty} \\ $$$$={e}^{{iy}} \left(−\frac{\mathrm{1}}{−\mathrm{1}+{i}}\right)=\frac{{e}^{{ih}} }{\mathrm{1}−{i}} \\ $$$$=\frac{\left(\mathrm{1}+{i}\right){e}^{{iy}} }{\mathrm{2}}=\frac{\left(\mathrm{1}+{i}\right)\left({cosy}+{isiny}\right)}{\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left\{{cosy}+{isiny}+{icosy}−{siny}\right\} \\ $$$$\Rightarrow{Im}\left(...\right)=\frac{\mathrm{1}}{\mathrm{2}}\left({cosy}+{siny}\right)\Rightarrow \\ $$$$\Phi=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\mathrm{2}}\left({cosy}+{siny}\right){e}^{−{y}} {dy} \\ $$$$\mathrm{2}\Phi={Re}\left(\int_{\mathrm{0}} ^{\infty} \:{e}^{−{y}+{iy}} {dy}\right)+{Im}\left(\int_{\mathrm{0}} ^{\infty} {e}^{−{y}+{iy}} {dy}\right) \\ $$$${or}\:\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{\left(−\mathrm{1}+{i}\right){y}} {dy} \\ $$$$=\left[\frac{\mathrm{1}}{−\mathrm{1}+{i}}{e}^{\left(−\mathrm{1}+{i}\right){y}} \right]_{\mathrm{0}} ^{\infty} =\frac{\mathrm{1}}{\mathrm{1}−{i}} \\ $$$$=\frac{\mathrm{1}+{i}}{\mathrm{2}}\:\Rightarrow{Re}\left(....\right)=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${and}\:{Im}\left(...\right)=\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow \\ $$$$\mathrm{2}\Phi=\mathrm{1}\:\Rightarrow\Phi=\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Commented by mnjuly1970 last updated on 06/Jul/22

bravo sir..

$$\mathrm{bravo}\:\mathrm{sir}.. \\ $$

Commented by Mathspace last updated on 06/Jul/22

you are welcome

$${you}\:{are}\:{welcome} \\ $$

Answered by Eulerian last updated on 07/Jul/22

    Ω = ℑ ∫_0 ^( ∞) ∫_0 ^( ∞)  e^(−(x+y))  e^(i(x+y))  dxdy        = ℑ ∫_0 ^( ∞) ∫_0 ^( ∞)  e^(−(1−i)x)  e^(−(1−i)y)  dxdy        = ℑ (∫_0 ^( ∞) e^(−(1−i)y)  dy)^2         = ℑ ((1/(1−i)))^2         = (1/2)

$$\: \\ $$$$\:\Omega\:=\:\Im\:\int_{\mathrm{0}} ^{\:\infty} \int_{\mathrm{0}} ^{\:\infty} \:\mathrm{e}^{−\left(\mathrm{x}+\mathrm{y}\right)} \:\mathrm{e}^{\mathrm{i}\left(\mathrm{x}+\mathrm{y}\right)} \:\mathrm{dxdy} \\ $$$$\:\:\:\:\:\:=\:\Im\:\int_{\mathrm{0}} ^{\:\infty} \int_{\mathrm{0}} ^{\:\infty} \:\mathrm{e}^{−\left(\mathrm{1}−\mathrm{i}\right)\mathrm{x}} \:\mathrm{e}^{−\left(\mathrm{1}−\mathrm{i}\right)\mathrm{y}} \:\mathrm{dxdy} \\ $$$$\:\:\:\:\:\:=\:\Im\:\left(\int_{\mathrm{0}} ^{\:\infty} \mathrm{e}^{−\left(\mathrm{1}−\mathrm{i}\right)\mathrm{y}} \:\mathrm{dy}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:=\:\Im\:\left(\frac{\mathrm{1}}{\mathrm{1}−\mathrm{i}}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com