All Questions Topic List
Vector Questions
Previous in All Question Next in All Question
Previous in Vector Next in Vector
Question Number 173069 by mnjuly1970 last updated on 06/Jul/22
Θ=∫0∞∫0∞xye−(x+y)cos(x+y)dxdy=1σfindthevalueof″σ″.
Answered by aleks041103 last updated on 07/Jul/22
Θ=Re(∫0∞∫0∞xye−(x+y)ei(x+y)dxdy)∫0∞∫0∞xye−(x+y)ei(x+y)dxdy==∫0∞∫0∞xye(i−1)(x+y)dxdy==∫0∞∫0∞xe(i−1)xye(i−1)ydxdy==(∫0∞xe(i−1)xdx)2∫0∞xe−axdx=1a2∫0∞(ax)e−(ax)d(ax)==1a2(∫0∞x1e−xdx)=1!a2=1a2⇒Θ=Re(1(1−i)4)1−i=12+12e−iarctg(−1/1)=2e−iπ/4⇒(1−i)4=(2)4e−iπ=−4⇒Θ=Re(1−4)=1−4=1σ⇒σ=−4
Commented by aleks041103 last updated on 07/Jul/22
a2∫0∞xe−axdx=∫0a∞x1e−xdx=1!,ifRe(a)>0
Answered by Eulerian last updated on 07/Jul/22
Θ=ℜ∫0∞∫0∞xye−(x+y)ei(x+y)dxdy=ℜ∫0∞∫0∞xye−(1−i)(x+y)dxdy=ℜ∫0∞∫0∞xye−(1−i)x−(1−i)ydxdy=ℜ(∫0∞ye−(1−i)ydy)(∫0∞xe−(1−i)xdx)=ℜ(1!(1−i)1+1)2=−14Hence,σ=−4
Terms of Service
Privacy Policy
Contact: info@tinkutara.com