Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 173069 by mnjuly1970 last updated on 06/Jul/22

       Θ =∫_0 ^( ∞) ∫_0 ^( ∞) xy e^( −(x+y)) cos(x+y )dxdy=(1/σ)          find the  value of  ” σ  ”.

Θ=00xye(x+y)cos(x+y)dxdy=1σfindthevalueofσ.

Answered by aleks041103 last updated on 07/Jul/22

Θ=Re(∫_0 ^∞ ∫_0 ^∞ xy e^(−(x+y)) e^(i(x+y)) dxdy)  ∫_0 ^∞ ∫_0 ^∞ xy e^(−(x+y)) e^(i(x+y)) dxdy=  =∫_0 ^∞ ∫_0 ^∞ xy e^((i−1)(x+y)) dxdy=  =∫_0 ^∞ ∫_0 ^∞ xe^((i−1)x) ye^((i−1)y) dxdy=  =(∫_0 ^∞ x e^((i−1)x) dx)^2   ∫_0 ^∞ x e^(−ax) dx=(1/a^2 )∫_0 ^∞ (ax)e^(−(ax)) d(ax)=  =(1/a^2 )(∫_0 ^∞ x^1 e^(−x) dx)=((1!)/a^2 )=(1/a^2 )  ⇒Θ=Re((1/((1−i)^4 )))  1−i=(√(1^2 +1^2 ))e^(−iarctg(−1/1)) =(√2)e^(−iπ/4)   ⇒(1−i)^4 =((√2))^4 e^(−iπ) =−4  ⇒Θ=Re((1/(−4)))=(1/(−4))=(1/σ)  ⇒σ=−4

Θ=Re(00xye(x+y)ei(x+y)dxdy)00xye(x+y)ei(x+y)dxdy==00xye(i1)(x+y)dxdy==00xe(i1)xye(i1)ydxdy==(0xe(i1)xdx)20xeaxdx=1a20(ax)e(ax)d(ax)==1a2(0x1exdx)=1!a2=1a2Θ=Re(1(1i)4)1i=12+12eiarctg(1/1)=2eiπ/4(1i)4=(2)4eiπ=4Θ=Re(14)=14=1σσ=4

Commented by aleks041103 last updated on 07/Jul/22

a^2 ∫_0 ^∞ x e^(−ax) dx=∫_0 ^(a∞) x^1 e^(−x) dx=1!, if Re(a)>0

a20xeaxdx=0ax1exdx=1!,ifRe(a)>0

Answered by Eulerian last updated on 07/Jul/22

 Θ = ℜ∫_0 ^( ∞) ∫_0 ^( ∞) xy e^( −(x+y)) e^(i(x+y))  dxdy        = ℜ∫_0 ^( ∞) ∫_0 ^( ∞) xy e^( −(1−i)(x+y))  dxdy        = ℜ∫_0 ^( ∞) ∫_0 ^( ∞) xy e^( −(1−i)x−(1−i)y)  dxdy        = ℜ(∫_0 ^( ∞) y e^(−(1−i)y)  dy)(∫_0 ^( ∞) x e^( −(1−i)x)  dx)        = ℜ(((1!)/((1−i)^(1+1) )))^2        = −(1/4)      Hence,  σ = −4

Θ=00xye(x+y)ei(x+y)dxdy=00xye(1i)(x+y)dxdy=00xye(1i)x(1i)ydxdy=(0ye(1i)ydy)(0xe(1i)xdx)=(1!(1i)1+1)2=14Hence,σ=4

Terms of Service

Privacy Policy

Contact: info@tinkutara.com