All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 173139 by mnjuly1970 last updated on 07/Jul/22
Answered by Mathspace last updated on 07/Jul/22
Υ=∫0∞dx1+x(x2+2x+2)changement1+x=tgivex=t2−1⇒Υ=∫1∞2tdtt((t2−1)2+2(t2−1)+2)=2∫1+∞dtt4−2t2+1+2t2−2+2=2∫1+∞dtt4+1wehave∫0∞dtt4+1=∫01dtt4+1+∫1∞dtt4+1⇒∫1∞dtt4+1=∫0∞dtt4+1−∫01dtt4+1∫0∞dtt4+1=t4=z14∫0∞z14−11+zdz=14×πsin(π4)=π4.12=π24∫01dt1+t4=∫01∑n=0∞(−1)nt4ndt=∑n=0∞(−1)n∫01t4ndt=∑n=0∞(−1)n14n+1=∑p=0∞18p+1−∑p=0∞14(2p+1)+1=∑p=0∞18p+1−∑p=0∞18p+5=18∑p=0∞(1p+18−1p+58)=116∑p=0∞1(p+18)(p+58)=116×Ψ(58)−Ψ(18)58−18=18(Ψ(58)−Ψ(18))...
Commented by mnjuly1970 last updated on 07/Jul/22
bravosir...
Commented by Tawa11 last updated on 11/Jul/22
Greatsir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com