All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 173148 by JordanRoddy last updated on 07/Jul/22
∫01nx(arcsinx)dx
Answered by Mathspace last updated on 07/Jul/22
In=∫01(nx)arcsinxdxwedothechangementarcsinx=t⇒x=sintandIn=∫0π2(sint)1ntcostdt=∫0π2t(cost(sint)1n)dt=[t1+1n(sint)1+1n]0π2−∫0π2nn+1(sint)1+1ndtπn2(n+1)−nn+1∫0π2(sint)1+1ndtwehave∫0π2(cost)2p−1.(sint)2q−1dt=B(ρ,q)=Γ(ρ).Γ(q)Γ(ρ+q)⇒2ρ−1=0and2q−1=1+1n⇒ρ=12andq=1+12n∫0π2(sint)1+1ndt=Γ(12)Γ(1+12n)2Γ(12+1+12n)=π2×Γ(1+12n)Γ(32+12n)⇒In=nπ2(n+1)−nn+1.π2×Γ(1+12n)Γ(32+12n)
Commented by Mathspace last updated on 07/Jul/22
sorry..∫0π2(cost)2ρ−1(sint)2q−1dt=12B(p,q)=Γ(ρ).Γ(q)2Γ(ρ+q)
Commented by Tawa11 last updated on 11/Jul/22
Greatsir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com