All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 173149 by mnjuly1970 last updated on 07/Jul/22
∫0∞dx1+x.(2+2x+x2)=1σ(π−ln(3+23))σ=?−−solution−−Ω=1+x=t2∫0∞dt1+t4=2∫01dt1+t4Ψ=∫01dt1+t4=12∫011+t2−(t−2−1)1+t4dt=12∫011+t21+t4dt+12∫011−t21+t4dtΦ=∫011+t21+t4dt=∫01t−2+1t−2+t2dt=∫011+t−2(t−t−1)2+2=sub[12tan−1(t−t−1)]01=π22∗ϕ=∫011−t21+t4dt=∫01t−2−1(t+t−1)2−2dt=t+1t=u−∫2∞du(u−2)(u+2)=−122[ln(u−2u+2)]2∞=122ln(2−22+2)ϕ=−122ln(3+22)∗∗(∗)&(∗∗)::Ω=2Ψ=(Φ+ϕ)=122(π−ln(3+22)...◼m.n
Commented by Tawa11 last updated on 11/Jul/22
Greatsir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com