All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 173150 by Frix last updated on 07/Jul/22
let∀n∈N:In(f(x))=thenthantiderivateoff(x)withI0=f(x)findtheformulafortheconstantsan,bnofIn(lnx)=anxnlnx+bnxn
Answered by aleks041103 last updated on 07/Jul/22
In+1(lnx)=∫In(lnx)dx==∫(anxnlnx+bnxn)dx==an∫xnlnxdx+bn∫xndx∫xnlnxdx=∫lnxd(xn+1n+1)==xn+1n+1lnx−1n+1∫xn+1dxx==1n+1xn+1lnx−1(n+1)2xn+1⇒In+1(lnx)=an[1n+1xn+1lnx−1(n+1)2xn+1]+bnn+1xn+1==(ann+1)xn+1lnx+(bnn+1−an(n+1)2)xn+1==an+1xn+1lnx+bn+1xn+1⇒{an+1=ann+1bn+1=bnn+1−an(n+1)21an+1=(n+1)1an⇒1an=const.n!⇒an=constn!I0(lnx)=lnx⇒a0=1⇒an=1n!⇒bn+1=bnn+1−1(n+1)!(n+1)(n+1)bn+1−bn=−1(n+1)!bn=cnn!⇒(n+1)cn+1(n+1)!−cnn!=−1(n+1)!=−1(n+1)n!⇒cn+1−cn=−1n+1⇒cn=const.−∑ni⩾11ic0=const.=0⇒cn=−∑ni⩾11i=−Hn⇒bn=−Hnn!⇒{an=1n!bn=−Hnn!,Hn⩾1=∑nk=11k,H0=0
Commented by Frix last updated on 08/Jul/22
thankyou!
Commented by Tawa11 last updated on 11/Jul/22
Greatsir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com