Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 173150 by Frix last updated on 07/Jul/22

let ∀n∈N: I_n (f(x))= the n^(th)  antiderivate  of f(x) with I_0 =f(x)  find the formula for the constants a_n , b_n  of  I_n (ln x)=a_n x^n ln x +b_n x^n

letnN:In(f(x))=thenthantiderivateoff(x)withI0=f(x)findtheformulafortheconstantsan,bnofIn(lnx)=anxnlnx+bnxn

Answered by aleks041103 last updated on 07/Jul/22

I_(n+1) (ln x)=∫I_n (ln x)dx=  =∫(a_n x^n ln x + b_n x^n )dx=  =a_n ∫x^n ln x dx + b_n ∫x^n dx  ∫x^n ln x dx=∫ln x d((x^(n+1) /(n+1)))=  =(x^(n+1) /(n+1))ln x−(1/(n+1))∫x^(n+1) (dx/x)=  =(1/(n+1))x^(n+1) ln x −(1/((n+1)^2 ))x^(n+1)   ⇒I_(n+1) (ln x)=a_n [(1/(n+1))x^(n+1) ln x −(1/((n+1)^2 ))x^(n+1) ]+(b_n /(n+1))x^(n+1) =  =((a_n /(n+1)))x^(n+1) ln x + ((b_n /(n+1))−(a_n /((n+1)^2 )))x^(n+1) =  =a_(n+1) x^(n+1) ln x + b_(n+1) x^(n+1)   ⇒ { ((a_(n+1) =(a_n /(n+1)))),((b_(n+1) =(b_n /(n+1))−(a_n /((n+1)^2 )))) :}  (1/a_(n+1) )=(n+1)(1/a_n )⇒(1/a_n )=const.n!⇒a_n =((const)/(n!))  I_0 (ln x)=ln x⇒a_0 =1⇒a_n =(1/(n!))  ⇒b_(n+1) =(b_n /(n+1))−(1/((n+1)!(n+1)))  (n+1)b_(n+1) −b_n =−(1/((n+1)!))  b_n =(c_n /(n!))  ⇒(n+1)(c_(n+1) /((n+1)!))−(c_n /(n!))=−(1/((n+1)!))=−(1/((n+1) n!))  ⇒c_(n+1) −c_n =−(1/(n+1))  ⇒c_n =const.−Σ_(i≥1) ^n (1/i)  c_0 =const.=0⇒c_n =−Σ_(i≥1) ^n (1/i)=−H_n   ⇒b_n =−(H_n /(n!))  ⇒ { ((a_n =(1/(n!)))),((b_n =−(H_n /(n!)) , H_(n≥1) =Σ_(k=1) ^n (1/k), H_0 =0)) :}

In+1(lnx)=In(lnx)dx==(anxnlnx+bnxn)dx==anxnlnxdx+bnxndxxnlnxdx=lnxd(xn+1n+1)==xn+1n+1lnx1n+1xn+1dxx==1n+1xn+1lnx1(n+1)2xn+1In+1(lnx)=an[1n+1xn+1lnx1(n+1)2xn+1]+bnn+1xn+1==(ann+1)xn+1lnx+(bnn+1an(n+1)2)xn+1==an+1xn+1lnx+bn+1xn+1{an+1=ann+1bn+1=bnn+1an(n+1)21an+1=(n+1)1an1an=const.n!an=constn!I0(lnx)=lnxa0=1an=1n!bn+1=bnn+11(n+1)!(n+1)(n+1)bn+1bn=1(n+1)!bn=cnn!(n+1)cn+1(n+1)!cnn!=1(n+1)!=1(n+1)n!cn+1cn=1n+1cn=const.ni11ic0=const.=0cn=ni11i=Hnbn=Hnn!{an=1n!bn=Hnn!,Hn1=nk=11k,H0=0

Commented by Frix last updated on 08/Jul/22

thank you!

thankyou!

Commented by Tawa11 last updated on 11/Jul/22

Great sir

Greatsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com