Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 173242 by AgniMath last updated on 08/Jul/22

Commented by som(math1967) last updated on 09/Jul/22

2          a,b,c∈R

2a,b,cR

Answered by AgniMath last updated on 09/Jul/22

Another way    (a + b + c) = (√3)  or (a + b + c)^2  = 3  or a^2  + b^2  + c^2  + 2ab + 2bc + 2ca = 3  or a^2  + b^2  + c^2  + 2ab + 2bc + 2ca = 3ab + 3bc + 3ca  [∵ ab + bc + ca = 1]  or a^2  + b^2  + c^2  − ab − bc − ca = 0  or 2a^2  + 2b^2  + 2c^2  − 2ab − 2bc − 2ca = 0  or (a − b)^2  + (b − c)^2  + (c − a)^2  = 0     determinant ((((a − b)^2  = 0)),((or a − b = 0)),((or a = b))) determinant ((((b −c)^2  = 0)),((or b − c = 0)),((b = c))) determinant ((((c − a)^2 = 0)),((or c − a = 0)),((or c = a)))  ∴ a = b = c    ((a + b)/c) = ((a + a)/a) = ((2a)/a) = 2

Anotherway(a+b+c)=3or(a+b+c)2=3ora2+b2+c2+2ab+2bc+2ca=3ora2+b2+c2+2ab+2bc+2ca=3ab+3bc+3ca[ab+bc+ca=1]ora2+b2+c2abbcca=0or2a2+2b2+2c22ab2bc2ca=0or(ab)2+(bc)2+(ca)2=0|(ab)2=0orab=0ora=b||(bc)2=0orbc=0b=c||(ca)2=0orca=0orc=a|a=b=ca+bc=a+aa=2aa=2

Answered by a.lgnaoui last updated on 09/Jul/22

a+b+c=(√3)              ⇒ ((a+b)/c)+1=((√3)/c)  ab+bc+ca=1         ⇒ab+c(a+b)=1   ⇒ab=1−c(a+b)    ((ab)/c)   +(a+b)=(1/c)     ab=1−c(a+b)    ((a+b)/c)+1=((√3)/c)    a+b=(√(3 ))−c                                              ab=1−((√3)−c)c=1−(√3)c+c^2   x^2 −((√3)−c)x+c^2 −(√3)c+1  3+c^2 −2(√3)c−4(c^2 −(√3)c+1)=3−4−3c^2 +2(√3)c  3c^2 −2(√3)c+1⇒(c−(1/3))^2   c=((2(√3)−)/6)=((√3)/3)     ⇒a+b=(√3)−((√3)/3)=((2(√3))/3)  ((a+b)/c)=((2(√3))/3)×(3/( (√3)))=2    is the possible solution

a+b+c=3a+bc+1=3cab+bc+ca=1ab+c(a+b)=1ab=1c(a+b)abc+(a+b)=1cab=1c(a+b)a+bc+1=3ca+b=3cab=1(3c)c=13c+c2x2(3c)x+c23c+13+c223c4(c23c+1)=343c2+23c3c223c+1(c13)2c=236=33a+b=333=233a+bc=233×33=2isthepossiblesolution

Commented by Tawa11 last updated on 11/Jul/22

Great sirs

Greatsirs

Terms of Service

Privacy Policy

Contact: info@tinkutara.com