Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 173352 by cortano1 last updated on 10/Jul/22

Answered by mr W last updated on 10/Jul/22

x_(n+1) ^2 =((2x_n )/(x_n +1))  ((1/x_(n+1) ))^2 =(1/2)(1+(1/x_n ))  let a_n =(1/x_n )  a_(n+1) ^2 =(1/2)(1+a_n )  2a_(n+1) ^2 −1=a_n       { ?!    2cos^2  α−1=cos 2α}  let a_n =cos θ_n   2 cos^2  θ_(n+1) −1=cos θ_n   cos 2θ_(n+1) =cos θ_n   ⇒2θ_(n+1) =θ_n   ⇒θ_n =(θ_(n−1) /2)=(θ_(n−2) /2^2 )=...=(θ_1 /2^(n−1) )  x_1 =(1/a_1 )=(1/(cos θ_1 ))=(√2) ⇒cos θ_1 =(1/( (√2))) ⇒θ_1 =(π/4)  ⇒θ_n =(π/(4×2^(n−1) ))=(π/2^(n+1) )  ⇒x_n =(1/a_n )=(1/(cos θ_n ))=(1/(cos (π/2^(n+1) )))  Π_(n=1) ^∞ x_n =lim_(n→∞) ((1/(cos (π/2^(n+1) ) cos (π/2^n ) ... cos (π/2^2 ))))  =lim_(n→∞) (((2 sin (π/2^(n+1) ))/(2 sin (π/2^(n+1) ) cos (π/2^(n+1) ) cos (π/2^n ) ... cos (π/2^2 ))))  =lim_(n→∞) (((2 sin (π/2^(n+1) ))/(sin (π/2^n ) cos (π/2^n ) ... cos (π/2^2 ))))  =lim_(n→∞) (((2^2  sin (π/2^(n+1) ))/(sin (π/2^(n−1) ) cos (π/2^(n−1) ) ... cos (π/2^2 ))))  ...  =lim_(n→∞) (((2^(n−1)  sin (π/2^(n+1) ))/(sin (π/2^2 ) cos (π/2^2 ))))  =lim_(n→∞) (((2^n  sin (π/2^(n+1) ))/(sin (π/2))))  =lim_(n→∞) (2^n  sin (π/2^(n+1) ))  =(π/2)lim_(n→∞) (((sin (π/2^(n+1) ))/(π/2^(n+1) )))  =(π/2)lim_(t→0) (((sin t)/t))  =(π/2) ✓

$${x}_{{n}+\mathrm{1}} ^{\mathrm{2}} =\frac{\mathrm{2}{x}_{{n}} }{{x}_{{n}} +\mathrm{1}} \\ $$$$\left(\frac{\mathrm{1}}{{x}_{{n}+\mathrm{1}} }\right)^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}_{{n}} }\right) \\ $$$${let}\:{a}_{{n}} =\frac{\mathrm{1}}{{x}_{{n}} } \\ $$$${a}_{{n}+\mathrm{1}} ^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+{a}_{{n}} \right) \\ $$$$\mathrm{2}{a}_{{n}+\mathrm{1}} ^{\mathrm{2}} −\mathrm{1}={a}_{{n}} \:\:\:\:\:\:\left\{\:?!\:\:\:\:\mathrm{2cos}^{\mathrm{2}} \:\alpha−\mathrm{1}=\mathrm{cos}\:\mathrm{2}\alpha\right\} \\ $$$${let}\:{a}_{{n}} =\mathrm{cos}\:\theta_{{n}} \\ $$$$\mathrm{2}\:\mathrm{cos}^{\mathrm{2}} \:\theta_{{n}+\mathrm{1}} −\mathrm{1}=\mathrm{cos}\:\theta_{{n}} \\ $$$$\mathrm{cos}\:\mathrm{2}\theta_{{n}+\mathrm{1}} =\mathrm{cos}\:\theta_{{n}} \\ $$$$\Rightarrow\mathrm{2}\theta_{{n}+\mathrm{1}} =\theta_{{n}} \\ $$$$\Rightarrow\theta_{{n}} =\frac{\theta_{{n}−\mathrm{1}} }{\mathrm{2}}=\frac{\theta_{{n}−\mathrm{2}} }{\mathrm{2}^{\mathrm{2}} }=...=\frac{\theta_{\mathrm{1}} }{\mathrm{2}^{{n}−\mathrm{1}} } \\ $$$${x}_{\mathrm{1}} =\frac{\mathrm{1}}{{a}_{\mathrm{1}} }=\frac{\mathrm{1}}{\mathrm{cos}\:\theta_{\mathrm{1}} }=\sqrt{\mathrm{2}}\:\Rightarrow\mathrm{cos}\:\theta_{\mathrm{1}} =\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\Rightarrow\theta_{\mathrm{1}} =\frac{\pi}{\mathrm{4}} \\ $$$$\Rightarrow\theta_{{n}} =\frac{\pi}{\mathrm{4}×\mathrm{2}^{{n}−\mathrm{1}} }=\frac{\pi}{\mathrm{2}^{{n}+\mathrm{1}} } \\ $$$$\Rightarrow{x}_{{n}} =\frac{\mathrm{1}}{{a}_{{n}} }=\frac{\mathrm{1}}{\mathrm{cos}\:\theta_{{n}} }=\frac{\mathrm{1}}{\mathrm{cos}\:\frac{\pi}{\mathrm{2}^{{n}+\mathrm{1}} }} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}{x}_{{n}} =\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{1}}{\mathrm{cos}\:\frac{\pi}{\mathrm{2}^{{n}+\mathrm{1}} }\:\mathrm{cos}\:\frac{\pi}{\mathrm{2}^{{n}} }\:...\:\mathrm{cos}\:\frac{\pi}{\mathrm{2}^{\mathrm{2}} }}\right) \\ $$$$=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{2}\:\mathrm{sin}\:\frac{\pi}{\mathrm{2}^{{n}+\mathrm{1}} }}{\mathrm{2}\:\mathrm{sin}\:\frac{\pi}{\mathrm{2}^{{n}+\mathrm{1}} }\:\mathrm{cos}\:\frac{\pi}{\mathrm{2}^{{n}+\mathrm{1}} }\:\mathrm{cos}\:\frac{\pi}{\mathrm{2}^{{n}} }\:...\:\mathrm{cos}\:\frac{\pi}{\mathrm{2}^{\mathrm{2}} }}\right) \\ $$$$=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{2}\:\mathrm{sin}\:\frac{\pi}{\mathrm{2}^{{n}+\mathrm{1}} }}{\mathrm{sin}\:\frac{\pi}{\mathrm{2}^{{n}} }\:\mathrm{cos}\:\frac{\pi}{\mathrm{2}^{{n}} }\:...\:\mathrm{cos}\:\frac{\pi}{\mathrm{2}^{\mathrm{2}} }}\right) \\ $$$$=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{2}^{\mathrm{2}} \:\mathrm{sin}\:\frac{\pi}{\mathrm{2}^{{n}+\mathrm{1}} }}{\mathrm{sin}\:\frac{\pi}{\mathrm{2}^{{n}−\mathrm{1}} }\:\mathrm{cos}\:\frac{\pi}{\mathrm{2}^{{n}−\mathrm{1}} }\:...\:\mathrm{cos}\:\frac{\pi}{\mathrm{2}^{\mathrm{2}} }}\right) \\ $$$$... \\ $$$$=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{2}^{{n}−\mathrm{1}} \:\mathrm{sin}\:\frac{\pi}{\mathrm{2}^{{n}+\mathrm{1}} }}{\mathrm{sin}\:\frac{\pi}{\mathrm{2}^{\mathrm{2}} }\:\mathrm{cos}\:\frac{\pi}{\mathrm{2}^{\mathrm{2}} }}\right) \\ $$$$=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{2}^{{n}} \:\mathrm{sin}\:\frac{\pi}{\mathrm{2}^{{n}+\mathrm{1}} }}{\mathrm{sin}\:\frac{\pi}{\mathrm{2}}}\right) \\ $$$$=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{2}^{{n}} \:\mathrm{sin}\:\frac{\pi}{\mathrm{2}^{{n}+\mathrm{1}} }\right) \\ $$$$=\frac{\pi}{\mathrm{2}}\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{sin}\:\frac{\pi}{\mathrm{2}^{{n}+\mathrm{1}} }}{\frac{\pi}{\mathrm{2}^{{n}+\mathrm{1}} }}\right) \\ $$$$=\frac{\pi}{\mathrm{2}}\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{sin}\:{t}}{{t}}\right) \\ $$$$=\frac{\pi}{\mathrm{2}}\:\checkmark \\ $$

Commented by aleks041103 last updated on 10/Jul/22

That is nice. I saw x_(n+1)  instead of x_n +1

$${That}\:{is}\:{nice}.\:{I}\:{saw}\:{x}_{{n}+\mathrm{1}} \:{instead}\:{of}\:{x}_{{n}} +\mathrm{1} \\ $$

Commented by mr W last updated on 10/Jul/22

i saw exactly the same as you at the  beginning. later i realised something  must be wrong.

$${i}\:{saw}\:{exactly}\:{the}\:{same}\:{as}\:{you}\:{at}\:{the} \\ $$$${beginning}.\:{later}\:{i}\:{realised}\:{something} \\ $$$${must}\:{be}\:{wrong}. \\ $$

Commented by Tawa11 last updated on 11/Jul/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com