Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 173424 by mnjuly1970 last updated on 11/Jul/22

      prove  that       ∫_0 ^( ∞) (( sin(x))/(sinh(x))) dx = (π/2)tanh((π/2))

$$ \\ $$$$\:\:\:\:\mathrm{prove}\:\:\mathrm{that} \\ $$$$ \\ $$$$\:\:\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:\mathrm{sin}\left(\mathrm{x}\right)}{\mathrm{sinh}\left(\mathrm{x}\right)}\:\mathrm{dx}\:=\:\frac{\pi}{\mathrm{2}}\mathrm{tanh}\left(\frac{\pi}{\mathrm{2}}\right) \\ $$$$ \\ $$

Answered by Mathspace last updated on 11/Jul/22

Ψ=∫_0 ^∞  ((sinx)/(sh(x)))dx=2∫_0 ^∞  ((sinx)/(e^x −e^(−x) ))dx  =2∫_0 ^∞  ((e^(−x) sinx)/(1−e^(−2x) ))dx  =2∫_0 ^∞ e^(−x) sinxΣ_(n=0) ^∞ e^(−2nx) dx  =2Σ_(n=0) ^∞ ∫_0 ^∞ e^(−(2n+1)x) sinx dx  but ∫_0 ^∞  e^(−(2n+1)x) sinxdx  =Im(∫_0 ^∞  e^(−(n+1)x+ix) dx)  and ∫_0 ^∞ e^(−(n+1)+i)x) dx  =(1/(−(n+1)+i))e^(−(n+1)+i)x) ]_0 ^∞   =(1/(n+1−i))=((n+1+i)/((n+1)^2 +1)) ⇒  Im(∫_0 ^∞ ....)=(1/((n+1)^2 +1)) ⇒  Ψ=2Σ_(n=0) ^∞ (1/((n+1)^2 +1))  =2Σ_(n=1) ^∞ (1/(n^2 +1))  Σ_(n=0) ^∞ (1/(n^2 +1))=Σ_(n=0) ^∞ (1/((n+i)(n−i)))  =((Ψ(i)−Ψ(−i))/(2i)) after we use  Ψ(z)−Ψ(1−z)=πcotan(πz)  or we can developp cos(αx)  at fourier serie to find the value...

$$\Psi=\int_{\mathrm{0}} ^{\infty} \:\frac{{sinx}}{{sh}\left({x}\right)}{dx}=\mathrm{2}\int_{\mathrm{0}} ^{\infty} \:\frac{{sinx}}{{e}^{{x}} −{e}^{−{x}} }{dx} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\infty} \:\frac{{e}^{−{x}} {sinx}}{\mathrm{1}−{e}^{−\mathrm{2}{x}} }{dx} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\infty} {e}^{−{x}} {sinx}\sum_{{n}=\mathrm{0}} ^{\infty} {e}^{−\mathrm{2}{nx}} {dx} \\ $$$$=\mathrm{2}\sum_{{n}=\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} {e}^{−\left(\mathrm{2}{n}+\mathrm{1}\right){x}} {sinx}\:{dx} \\ $$$${but}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−\left(\mathrm{2}{n}+\mathrm{1}\right){x}} {sinxdx} \\ $$$$={Im}\left(\int_{\mathrm{0}} ^{\infty} \:{e}^{−\left({n}+\mathrm{1}\right){x}+{ix}} {dx}\right) \\ $$$${and}\:\int_{\mathrm{0}} ^{\infty} {e}^{\left.−\left({n}+\mathrm{1}\right)+{i}\right){x}} {dx} \\ $$$$\left.=\frac{\mathrm{1}}{−\left({n}+\mathrm{1}\right)+{i}}{e}^{\left.−\left({n}+\mathrm{1}\right)+{i}\right){x}} \right]_{\mathrm{0}} ^{\infty} \\ $$$$=\frac{\mathrm{1}}{{n}+\mathrm{1}−{i}}=\frac{{n}+\mathrm{1}+{i}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{1}}\:\Rightarrow \\ $$$${Im}\left(\int_{\mathrm{0}} ^{\infty} ....\right)=\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{1}}\:\Rightarrow \\ $$$$\Psi=\mathrm{2}\sum_{{n}=\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{1}} \\ $$$$=\mathrm{2}\sum_{{n}=\mathrm{1}} ^{\infty} \frac{\mathrm{1}}{{n}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\sum_{{n}=\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{{n}^{\mathrm{2}} +\mathrm{1}}=\sum_{{n}=\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\left({n}+{i}\right)\left({n}−{i}\right)} \\ $$$$=\frac{\Psi\left({i}\right)−\Psi\left(−{i}\right)}{\mathrm{2}{i}}\:{after}\:{we}\:{use} \\ $$$$\Psi\left({z}\right)−\Psi\left(\mathrm{1}−{z}\right)=\pi{cotan}\left(\pi{z}\right) \\ $$$${or}\:{we}\:{can}\:{developp}\:{cos}\left(\alpha{x}\right) \\ $$$${at}\:{fourier}\:{serie}\:{to}\:{find}\:{the}\:{value}... \\ $$

Commented by mnjuly1970 last updated on 11/Jul/22

grateful sir

$$\mathrm{grateful}\:\mathrm{sir}\: \\ $$

Commented by Tawa11 last updated on 13/Jul/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com