Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 173485 by mnjuly1970 last updated on 12/Jul/22

       Solve       (x ∈ R )        x2^( (1/x))  +(1/x) 2^( x) = 4          −Source: L.Panaitopol

Solve(xR)x21x+1x2x=4Source:L.Panaitopol

Answered by aleks041103 last updated on 12/Jul/22

obv x>0 for x2^(1/x) +2^x /x = 4  f(x)=x 2^(1/x)   ⇒g(x)=f(x)+f(1/x)  ⇒g(1/x)=f(1/x)+f(x)  ⇒g(x)=g(1/x)=4  ⇒therefore it is enough to search  for x>1 and for ∀x_i >1, s.t. g(x_i )=4 we′ll  have x_i ^� =(1/x_i ), s.t. g(x_i ^� )=4 too.  2^x =e^(ln(2)x) =Σ_(i=0) ^∞ (((ln(2)x)^i )/(i!))  ⇒f(x)=Σ_(i=0) ^∞ (((ln(2))^i )/(i!)) (1/x^(i−1) )  ⇒f(1/x)=Σ_(i=0) ^∞ (((ln(2))^i )/(i!))x^(i−1)   ⇒g(x)=Σ_(i=0) ^∞ (((ln(2))^i )/(i!))(x^(i−1) +(1/x^(i−1) ))  g(x)=Σ_(i=0) ^∞ (((ln(2))^i )/(i!))s_(i−1) (x)  s_i (x)=x^i +x^(−i)   s_i ′(x)=ix^(i−1) −ix^(−i−1) =(i/x)(x^i −x^(−i) )  for x>1:  i>0:x^i >1⇒x^(−i) <1⇒x^i −x^(−i) >0  ⇒s_(i>0) ′(x>1)>0  i<0:x^(i<1) ⇒x^(−i) >1⇒x^i −x^(−i) <0  ⇒i(x^i −x^(−i) )>0  ⇒s_(i<0) ′(x>1)>0  i=0:  s_0 ′=0  ⇒g′(x>1)=Σ_(i=0,i≠1) ^∞ (((ln(2))^i )/(i!))s_(i−1) ′(x>1)  since s_(i−1) ′(x>1)>0⇒g′(x>1)>0  ⇒g(x) is strictly increasing for x>1  ⇒for g(x)=4 exists at most 1 soln. x≥1  And g(1)=4  ⇒The only solution to the problem is  x=1

obvx>0forx21/x+2x/x=4f(x)=x21/xg(x)=f(x)+f(1/x)g(1/x)=f(1/x)+f(x)g(x)=g(1/x)=4thereforeitisenoughtosearchforx>1andforxi>1,s.t.g(xi)=4wellhavex¯i=1xi,s.t.g(x¯i)=4too.2x=eln(2)x=i=0(ln(2)x)ii!f(x)=i=0(ln(2))ii!1xi1f(1/x)=i=0(ln(2))ii!xi1g(x)=i=0(ln(2))ii!(xi1+1xi1)g(x)=i=0(ln(2))ii!si1(x)si(x)=xi+xisi(x)=ixi1ixi1=ix(xixi)forx>1:i>0:xi>1xi<1xixi>0si>0(x>1)>0i<0:xi<1xi>1xixi<0i(xixi)>0si<0(x>1)>0i=0:s0=0g(x>1)=i=0,i1(ln(2))ii!si1(x>1)sincesi1(x>1)>0g(x>1)>0g(x)isstrictlyincreasingforx>1forg(x)=4existsatmost1soln.x1Andg(1)=4Theonlysolutiontotheproblemisx=1

Commented by Tawa11 last updated on 13/Jul/22

Great sir

Greatsir

Answered by dragan91 last updated on 12/Jul/22

2^(log_2 x+(1/x)) +2^(log_2 (1/x)+x) =4  2^(log_2 x+(1/x)) +2^(−log_2 x+x) =4  2^(log_2 x+(1/x)) +2^(−log_2 x+x  ) ≥^(AM−GM)   2(√2^(x+(1/x)) )  2^(x+(1/x)) ≤2^2 ∣log_2   x+(1/x)≤2  since x+(1/x)≥^(AM−GM) 2⇒equation has solution   only for x=1

2log2x+1x+2log21x+x=42log2x+1x+2log2x+x=42log2x+1x+2log2x+xAMGM22x+1x2x+1x22log2x+1x2sincex+1xAMGM2equationhassolutiononlyforx=1

Commented by Tawa11 last updated on 13/Jul/22

Great sir

Greatsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com