Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 173486 by mnjuly1970 last updated on 12/Jul/22

      𝛗 = ∫_0 ^( ∞) ((cos (ax)βˆ’ sin(bx))/x^( 2) )dx  =?          𝛗=∫_0 ^( ∞) ((1βˆ’2sin^( 2) (((ax)/2))βˆ’(1βˆ’2sin^( 2) (((bx)/2))))/(x^2 ))dx         =2 {∫_0 ^( ∞) (((sin(((bx)/2)))/x))^2 dx=Θ_1 }βˆ’2{∫_0 ^( ∞) (((sin(((ax)/2)))/x))^2 dx=Θ_2 }          Θ_( 1) =^(((bx)/2)=t)  (b/2)∫_0 ^( ∞) ((sin^( 2) (t))/t^( 2) )dt= ((Ο€b)/4)           similarly :  Θ_( 2) =((Ο€a)/4)     ∴   𝛗= (Ο€/2)(∣bβˆ£βˆ’βˆ£a∣)        Dirichletβ€²s integrals: ∫_0 ^( ∞) ((sin(x))/x)dx=(Ο€/2)=∫_0 ^( ∞) ((sin^2 (x))/x^( 2) )dx

Ο•=∫0∞cos(ax)βˆ’sin(bx)x2dx=?Ο•=∫0∞1βˆ’2sin2(ax2)βˆ’(1βˆ’2sin2(bx2))x2dx=2{∫0∞(sin(bx2)x)2dx=Θ1}βˆ’2{∫0∞(sin(ax2)x)2dx=Θ2}Θ1=bx2=tb2∫0∞sin2(t)t2dt=Ο€b4similarly:Θ2=Ο€a4βˆ΄Ο•=Ο€2(∣bβˆ£βˆ’βˆ£a∣)Dirichletβ€²sintegrals:∫0∞sin(x)xdx=Ο€2=∫0∞sin2(x)x2dx

Commented by mokys last updated on 15/Jul/22

  𝛗 (a)= ∫_0 ^( ∞)  ((cos(ax))/x^2 ) dx β†’ 𝛗^β€² (a) =βˆ’ ∫_0 ^( ∞)  ((sin(ax))/x) dx  (ax)= k β†’ dx = (dk/a)    𝛗^β€² (a) = βˆ’ ∫_0 ^( ∞)  ((sink)/k) dk = βˆ’ (𝛑/2)     ∴ 𝛗 (a) = βˆ’((a𝛑)/2)    𝛗(b) = ∫_0 ^( ∞)  ((sin(bx))/x^2 ) dx     let: bx = m β†’ dx = (dm/b)    𝛗(b) = b ∫_0 ^( ∞)  ((sin(m))/m^2 ) dm = ((b𝛑)/2)    ∴ 𝛗 (a,b)= (𝛑/2) ( ∣bβˆ£βˆ’βˆ£a∣ )     Aldolaimy mohammad

Ο•(a)=∫0∞cos(ax)x2dxβ†’Ο•β€²(a)=βˆ’βˆ«0∞sin(ax)xdx(ax)=kβ†’dx=dkaΟ•β€²(a)=βˆ’βˆ«0∞sinkkdk=βˆ’Ο€2βˆ΄Ο•(a)=βˆ’aΟ€2Ο•(b)=∫0∞sin(bx)x2dxlet:bx=mβ†’dx=dmbΟ•(b)=b∫0∞sin(m)m2dm=bΟ€2βˆ΄Ο•(a,b)=Ο€2(∣bβˆ£βˆ’βˆ£a∣)Aldolaimymohammad

Terms of Service

Privacy Policy

Contact: info@tinkutara.com