All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 173486 by mnjuly1970 last updated on 12/Jul/22
Ο=β«0βcos(ax)βsin(bx)x2dx=?Ο=β«0β1β2sin2(ax2)β(1β2sin2(bx2))x2dx=2{β«0β(sin(bx2)x)2dx=Ξ1}β2{β«0β(sin(ax2)x)2dx=Ξ2}Ξ1=bx2=tb2β«0βsin2(t)t2dt=Οb4similarly:Ξ2=Οa4β΄Ο=Ο2(β£bβ£ββ£aβ£)Dirichletβ²sintegrals:β«0βsin(x)xdx=Ο2=β«0βsin2(x)x2dx
Commented by mokys last updated on 15/Jul/22
Ο(a)=β«0βcos(ax)x2dxβΟβ²(a)=ββ«0βsin(ax)xdx(ax)=kβdx=dkaΟβ²(a)=ββ«0βsinkkdk=βΟ2β΄Ο(a)=βaΟ2Ο(b)=β«0βsin(bx)x2dxlet:bx=mβdx=dmbΟ(b)=bβ«0βsin(m)m2dm=bΟ2β΄Ο(a,b)=Ο2(β£bβ£ββ£aβ£)Aldolaimymohammad
Terms of Service
Privacy Policy
Contact: info@tinkutara.com