Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 173500 by Shrinava last updated on 12/Jul/22

Find without any software:  Ω = ∫ (x + (5/x))(1 − (5/x^2 ))sin(ln(x + (5/x)))dx

Findwithoutanysoftware:Ω=(x+5x)(15x2)sin(ln(x+5x))dx

Answered by thfchristopher last updated on 12/Jul/22

Let u=x+(5/x)  du=(1−(5/x^2 ))dx  ∴ Ω=∫usin (ln u)du  =(1/2)∫sin (ln u)d(u^2 )  =(1/2)[u^2 sin (ln u)−∫u^2 d{sin (ln u)}]  =(1/2)u^2 sin (ln u)−(1/2)∫ucos (ln u)du  =(1/2)u^2 sin (ln u)−(1/4)∫cos (ln u)d(u^2 )  =(1/2)u^2 sin (ln u)−(1/4)[u^2 cos (ln u)−∫u^2 d{cos (ln u)}]  =(1/2)u^2 sin (ln u)−(1/4)u^2 cos (ln u)−(1/4)∫usin (ln u)du  ⇒(5/4)∫usin (ln u)du=(1/4)u^2 [2sin (ln u)−cos (ln u)]+C  ∫usin (ln u)du=(1/5)u^2 [2sin (ln u)−cos (ln u)]+C  ⇒∫(x+(5/x))(1−(5/x^2 ))sin [ln (x+(5/x))]dx  =(1/5)(x+(5/x))^2 [2sin {ln (x+(5/x))}−cos {ln (x+(5/x))}]+C

Letu=x+5xdu=(15x2)dxΩ=usin(lnu)du=12sin(lnu)d(u2)=12[u2sin(lnu)u2d{sin(lnu)}]=12u2sin(lnu)12ucos(lnu)du=12u2sin(lnu)14cos(lnu)d(u2)=12u2sin(lnu)14[u2cos(lnu)u2d{cos(lnu)}]=12u2sin(lnu)14u2cos(lnu)14usin(lnu)du54usin(lnu)du=14u2[2sin(lnu)cos(lnu)]+Cusin(lnu)du=15u2[2sin(lnu)cos(lnu)]+C(x+5x)(15x2)sin[ln(x+5x)]dx=15(x+5x)2[2sin{ln(x+5x)}cos{ln(x+5x)}]+C

Commented by Tawa11 last updated on 13/Jul/22

Great sir.

Greatsir.

Answered by a.lgnaoui last updated on 13/Jul/22

1−(5/x^2 )=(x+(5/x))′  and   (((x+(5/x))′)/(x+(5/x)))=ln(x+(5/x))′  ⌋Ω=∫(x+(5/x))^2 ×ln(x+(5/x))′sin (ln(x+(5/x)))dx  =∫(x+(5/x))^2 ×[−cos (ln(x+(5/x))]′dx  =let    U=(x+(5/x))^2     and  V=−cos (ln(x+(5/x)))  Ω=∫U×V′  =UV−∫U′V  [−(x+(5/x))^2 ×cos (ln(x+(5/x))) ]+∫[(x+(5/x))^2 ]′cos (ln(x+(5/x)))dx  (x+(5/x))^2 ′=2(x+(5/x))(1−(5/x^2 ))  posons  ∫U′cos (ln(x+(5/x)))=2∫(x+(5/x))(1−(5/x^2 ))cos (ln(x+(5/x)))dx    2∫(x+(5/x))^2 [sin( ln(x+(5/x)))]^′ dx  =−2I    or  I=[−cos(ln (x+(5/x)))(x+(5/x))^2 ]−2I  3I=−(x+(5/x))^2 cos (ln(x+(5/x)))⇒  I= −(([(x+(5/x))^2 cos (ln(x+(5/x)))])/3)

15x2=(x+5x)and(x+5x)x+5x=ln(x+5x)Ω=(x+5x)2×ln(x+5x)sin(ln(x+5x))dx=(x+5x)2×[cos(ln(x+5x)]dx=letU=(x+5x)2andV=cos(ln(x+5x))Ω=U×V=UVUV[(x+5x)2×cos(ln(x+5x))]+[(x+5x)2]cos(ln(x+5x))dxPrime causes double exponent: use braces to clarifyposonsUcos(ln(x+5x))=2(x+5x)(15x2)cos(ln(x+5x))dx2(x+5x)2[sin(ln(x+5x))]dx=2IorI=[cos(ln(x+5x))(x+5x)2]2I3I=(x+5x)2cos(ln(x+5x))I=[(x+5x)2cos(ln(x+5x))]3

Commented by Tawa11 last updated on 13/Jul/22

Great sir

Greatsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com