All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 173507 by JordanRoddy last updated on 12/Jul/22
solvey−(x+1)y′+2x(2x−1)(x+1)2=0andx(x2+x+1)y′+(x2+1)y=(x2+x+1)32
Commented by JordanRoddy last updated on 12/Jul/22
Commented by mokys last updated on 12/Jul/22
1)dydx−1x+1y=2x(2x−1)(x+1)3P(x)=−1x+1,Q(x)=2x(2x−1)(x+1)3I.f=e∫P(x)dx=e∫−1x+1dx=eln1x+1=1x+1(I.f)y=∫(I.f)Q(x)dxyx+1=2∫x(2x−1)(x+1)4dxlet:m=x+1→x=m−1→dx=dmyx+1=2∫(m−1)(2m−3)m4dmyx+1=2∫2m2−5m+3m4dmyx+1=2∫(2m2−5m3+3m4)dmyx+1=−4m+5m2−2m3+KNow:m=x+1∴y=5x+1−2(x+1)2−4+K(x+1)★MohammadAldolaimy★
Commented by Tawa11 last updated on 13/Jul/22
Greatsir.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com