Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 173523 by Physicien last updated on 13/Jul/22

Answered by Mathspace last updated on 13/Jul/22

I=∫  ((1+(√x)−(√(1+x)))/((1+(√x))^2 −1−x))dx  =∫  ((1+(√x)−(√(1+x)))/(1+2(√x)+x−1−x))dx  =(1/2)∫ ((1+(√x))/( (√x)))dx−(1/2)∫((√(1+x))/( (√x)))dx  we have ∫((1+(√x))/( (√x)))dx=∫(dx/( (√x))) +∫dx  =2(√x)+x+c_1   ∫((√(1+x))/( (√x)))dx=_((√x)=t)   ∫((√(1+t^2 ))/t)(2t)dt  =2∫(√(1+t^2 ))dt=_(t=shy)  2∫ chychy dy  =2∫ ch^2 y dy=∫(1+ch(2y))dy  =y+(1/2)ch(2y)  =y+chy.shy  =argsh(t)+t(√(1+t^2 ))+c_2   =ln(t+(√(1+t^2 )))+t(√(1+t^2 ))+c_2   =ln((√x)+(√(1+x)))+(√x)(√(1+x))+c_2   ⇒I=(√x)−(x/2)−(1/2)ln((√x)+(√(1+x)))−(1/2)(√x)(√(1+x))+C

$${I}=\int\:\:\frac{\mathrm{1}+\sqrt{{x}}−\sqrt{\mathrm{1}+{x}}}{\left(\mathrm{1}+\sqrt{{x}}\right)^{\mathrm{2}} −\mathrm{1}−{x}}{dx} \\ $$$$=\int\:\:\frac{\mathrm{1}+\sqrt{{x}}−\sqrt{\mathrm{1}+{x}}}{\mathrm{1}+\mathrm{2}\sqrt{{x}}+{x}−\mathrm{1}−{x}}{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\:\frac{\mathrm{1}+\sqrt{{x}}}{\:\sqrt{{x}}}{dx}−\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\sqrt{\mathrm{1}+{x}}}{\:\sqrt{{x}}}{dx} \\ $$$${we}\:{have}\:\int\frac{\mathrm{1}+\sqrt{{x}}}{\:\sqrt{{x}}}{dx}=\int\frac{{dx}}{\:\sqrt{{x}}}\:+\int{dx} \\ $$$$=\mathrm{2}\sqrt{{x}}+{x}+{c}_{\mathrm{1}} \\ $$$$\int\frac{\sqrt{\mathrm{1}+{x}}}{\:\sqrt{{x}}}{dx}=_{\sqrt{{x}}={t}} \:\:\int\frac{\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}{{t}}\left(\mathrm{2}{t}\right){dt} \\ $$$$=\mathrm{2}\int\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }{dt}=_{{t}={shy}} \:\mathrm{2}\int\:{chychy}\:{dy} \\ $$$$=\mathrm{2}\int\:{ch}^{\mathrm{2}} {y}\:{dy}=\int\left(\mathrm{1}+{ch}\left(\mathrm{2}{y}\right)\right){dy} \\ $$$$={y}+\frac{\mathrm{1}}{\mathrm{2}}{ch}\left(\mathrm{2}{y}\right) \\ $$$$={y}+{chy}.{shy} \\ $$$$={argsh}\left({t}\right)+{t}\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }+{c}_{\mathrm{2}} \\ $$$$={ln}\left({t}+\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\right)+{t}\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }+{c}_{\mathrm{2}} \\ $$$$={ln}\left(\sqrt{{x}}+\sqrt{\mathrm{1}+{x}}\right)+\sqrt{{x}}\sqrt{\mathrm{1}+{x}}+{c}_{\mathrm{2}} \\ $$$$\Rightarrow{I}=\sqrt{{x}}−\frac{{x}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\sqrt{{x}}+\sqrt{\mathrm{1}+{x}}\right)−\frac{\mathrm{1}}{\mathrm{2}}\sqrt{{x}}\sqrt{\mathrm{1}+{x}}+{C} \\ $$

Commented by Tawa11 last updated on 13/Jul/22

Great sir.

$$\mathrm{Great}\:\mathrm{sir}. \\ $$

Commented by Mathspace last updated on 13/Jul/22

you arewelcome

$${you}\:{arewelcome} \\ $$

Answered by MJS_new last updated on 13/Jul/22

∫(dx/(1+(√x)+(√(1+x))))=       [t=(√x)+(√(x+1)) → dx=((2(√(x+1))(√x))/t)]  =(1/2)∫(((t−1)(t^2 +1))/t^3 )dt=  =(1/2)∫(1−(1/t)+(1/t^2 )−(1/t^3 ))dt=  ...  =((x+2(√x)−(√(x+1))(√x)−ln ((√(x+1))+(√x)))/2)+C

$$\int\frac{{dx}}{\mathrm{1}+\sqrt{{x}}+\sqrt{\mathrm{1}+{x}}}= \\ $$$$\:\:\:\:\:\left[{t}=\sqrt{{x}}+\sqrt{{x}+\mathrm{1}}\:\rightarrow\:{dx}=\frac{\mathrm{2}\sqrt{{x}+\mathrm{1}}\sqrt{{x}}}{{t}}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\left({t}−\mathrm{1}\right)\left({t}^{\mathrm{2}} +\mathrm{1}\right)}{{t}^{\mathrm{3}} }{dt}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\left(\mathrm{1}−\frac{\mathrm{1}}{{t}}+\frac{\mathrm{1}}{{t}^{\mathrm{2}} }−\frac{\mathrm{1}}{{t}^{\mathrm{3}} }\right){dt}= \\ $$$$... \\ $$$$=\frac{{x}+\mathrm{2}\sqrt{{x}}−\sqrt{{x}+\mathrm{1}}\sqrt{{x}}−\mathrm{ln}\:\left(\sqrt{{x}+\mathrm{1}}+\sqrt{{x}}\right)}{\mathrm{2}}+{C} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com