Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 173556 by dragan91 last updated on 13/Jul/22

  Solve over integer  a^3 +2a^2 +3a+4=b!+c!

Solveoverintegera3+2a2+3a+4=b!+c!

Answered by Rasheed.Sindhi last updated on 14/Jul/22

a^3 +2a^2 +3a+4=b!+c!  a^3 +2a^2 +3a+4−(b!+c!)=0  The equation is cubic  ∴ a has at most 3 integral values  for particular value of b & c.   Let α,β & γ  are the roots of the above equation.  α+β+γ=−2 , αβ+βγ+γα=3 ,  αβγ= b!+c!−4  .....  ....

a3+2a2+3a+4=b!+c!a3+2a2+3a+4(b!+c!)=0Theequationiscubicahasatmost3integralvaluesforparticularvalueofb&c.Letα,β&γaretherootsoftheaboveequation.α+β+γ=2,αβ+βγ+γα=3,αβγ=b!+c!4.........

Commented by dragan91 last updated on 16/Jul/22

  a^3 +2a^2 +3a+4=b!+c!  (a+1)(a^2 +a+2)=b!+c!−2  since b!+c!−2≥0 ∀b,c∈N  ⇒(a+1)(a^2 +a+2)≥0⇒a≥−1   a^3 +2a^2 +3a+4 is never divisible by 3  then for 3≤b≤c and b!+c!=3   is no solution  a^3 +2a^2 +3a+4 could have solutions  for  1+c! (c≠2) or 2+c! (c≠1)  We have to consider  cases:  I)for fixed b!=1⇒b=0=1 c≠2  a)assume a≤c⇒c!≡0(mod a)  a^3 +2a^2 +3a+4=1+c!  a^3 +2a^2 +3a+3=c! /:a  a^2 +2a+3+^ (3/a)=((c!)/a)  LHS is integer for a={(−1,1,2,3)}  ⇒(a,b,c)={(−1,0,0),(−1,1,0),(−1,0,1)  (−1,1,1),(2,4,2),(2,2,4)}  b)assume c<a  c!<a!  a^3 +2a^2 +3a+3<a!  its true for a≥6  for a≥6 let a=6+k (k≥0)  (6+k)^3 +2(6+k)^2 +3(6+k)+3=c!  k^3 +20k^2 +35k+309=c!     LHS is not divisible by 2  for any inter ⇒ c=0 or c=1  ⇒k=−7 is no solution (k≥0)  c)a=0 no solution  II)For fixed b!=2⇒b=2  a^3 +2a^2 +3a+2=c!  a)c≥a ⇒c!≡0(mod a)  a^3 +2a^2 +3a+2=c!/:a  a^2 +2a+3a+(2/a)=((c!)/a)  LHS is integer for a={(−1,1,2)} which is  already checked solutions  b)c<a  a^3 +2a^2 +3a+2<a!  its true for a≥6⇒a=6+p p≥0  c<6+p  (6+p)^3 +2(6+p)^2 +3(6+p)+2=c!  p^3 +20p^2 +135p+308=c!  p^3 +3p^2 ∙7+3p∙49+343−(p^2 +12p+35)=c!  (p+7)^3 −(p+7)(p+5)=c!  p+7=t   t^3 −t(t−2)=c!  Since c<p+6⇒c<t−1<t  for t>1 c≢0(mod t)⇒c!≢0(mod t)  t^3 −t(t−2)≡0(mod t)  its only possible solution for t=1  c!=1^3 −1^2 +2⇒c=2   Its contradiction since c<t−1  c)a=0⇒c=2  (a,b,c)={(0,2,2)}                                                                                        All solutions  (a,b,c)={(−1,0,0),(−1,0,1),(−1,1,0),  (−1,1,1),(0,2,2),(2,2,4),(2,4,2)}

a3+2a2+3a+4=b!+c!(a+1)(a2+a+2)=b!+c!2sinceb!+c!20b,cN(a+1)(a2+a+2)0a1a3+2a2+3a+4isneverdivisibleby3thenfor3bcandb!+c!=3isnosolutiona3+2a2+3a+4couldhavesolutionsfor1+c!(c2)or2+c!(c1)Wehavetoconsidercases:I)forfixedb!=1b=0=1c2a)assumeacc!0(moda)a3+2a2+3a+4=1+c!a3+2a2+3a+3=c!/:aa2+2a+3+3a=c!aLHSisintegerfora={(1,1,2,3)}(a,b,c)={(1,0,0),(1,1,0),(1,0,1)(1,1,1),(2,4,2),(2,2,4)}b)assumec<ac!<a!a3+2a2+3a+3<a!itstruefora6fora6leta=6+k(k0)(6+k)3+2(6+k)2+3(6+k)+3=c!k3+20k2+35k+309=c!LHSisnotdivisibleby2foranyinterc=0orc=1k=7isnosolution(k0)c)a=0nosolutionII)Forfixedb!=2b=2a3+2a2+3a+2=c!a)cac!0(moda)a3+2a2+3a+2=c!/:aa2+2a+3a+2a=c!aLHSisintegerfora={(1,1,2)}whichisalreadycheckedsolutionsb)c<aa3+2a2+3a+2<a!itstruefora6a=6+pp0c<6+p(6+p)3+2(6+p)2+3(6+p)+2=c!p3+20p2+135p+308=c!p3+3p27+3p49+343(p2+12p+35)=c!(p+7)3(p+7)(p+5)=c!p+7=tt3t(t2)=c!Sincec<p+6c<t1<tfort>1c0(modt)c!0(modt)t3t(t2)0(modt)itsonlypossiblesolutionfort=1c!=1312+2c=2Itscontradictionsincec<t1c)a=0c=2(a,b,c)={(0,2,2)}Allsolutions(a,b,c)={(1,0,0),(1,0,1),(1,1,0),(1,1,1),(0,2,2),(2,2,4),(2,4,2)}

Commented by dragan91 last updated on 15/Jul/22

yes. but equation has more solution wuth this conditions. αβγ=b!+c!−4  has infinite solutions.

yes.butequationhasmoresolutionwuththisconditions.αβγ=b!+c!4hasinfinitesolutions.

Commented by Rasheed.Sindhi last updated on 16/Jul/22

α+β+γ=−2 ∧ αβ+βγ+γα=3     ⇒ αβγ may have multiple values.    Some other solutions of the equation:  (a,b,c)=(−1,0,1),(−1,1,0),(−1,1,1),  (2,2,4),(2,4,2),...

α+β+γ=2αβ+βγ+γα=3αβγmayhavemultiplevalues.Someothersolutionsoftheequation:(a,b,c)=(1,0,1),(1,1,0),(1,1,1),(2,2,4),(2,4,2),...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com