Question and Answers Forum

All Questions      Topic List

Gravitation Questions

Previous in All Question      Next in All Question      

Previous in Gravitation      Next in Gravitation      

Question Number 173558 by MadhumitaSamanta last updated on 13/Jul/22

A metal sphere has radius R and mass m. A spherical  hollow of diameter R is made in this sphere such that its  surface passes through the centre of the metal sphere  and touches the outside surface of the metal sphere.  A unit mass is placed at a distance from the centre of the metal  sphere. The gravitational field at that point is  (a) ((GM)/R^2 ) (1−(1/(8(1−((2R)/a))^2 )))  (b) ((GM)/a^2 ) (1−(1/(8(1−(R/(2a)))^2 )))  (c) ((GM)/((R+a)^2 )) (1−(1/(8(1−(R/(2a)))^2 )))  (d) ((GM)/((R−a)^2 )) (1−(1/(8(1−((2a)/R))^2 )))

$$\mathrm{A}\:\mathrm{metal}\:\mathrm{sphere}\:\mathrm{has}\:\mathrm{radius}\:{R}\:\mathrm{and}\:\mathrm{mass}\:{m}.\:\mathrm{A}\:\mathrm{spherical} \\ $$$$\mathrm{hollow}\:\mathrm{of}\:\mathrm{diameter}\:{R}\:\mathrm{is}\:\mathrm{made}\:\mathrm{in}\:\mathrm{this}\:\mathrm{sphere}\:\mathrm{such}\:\mathrm{that}\:\mathrm{its} \\ $$$$\mathrm{surface}\:\mathrm{passes}\:\mathrm{through}\:\mathrm{the}\:\mathrm{centre}\:\mathrm{of}\:\mathrm{the}\:\mathrm{metal}\:\mathrm{sphere} \\ $$$$\mathrm{and}\:\mathrm{touches}\:\mathrm{the}\:\mathrm{outside}\:\mathrm{surface}\:\mathrm{of}\:\mathrm{the}\:\mathrm{metal}\:\mathrm{sphere}. \\ $$$$\mathrm{A}\:\mathrm{unit}\:\mathrm{mass}\:\mathrm{is}\:\mathrm{placed}\:\mathrm{at}\:\mathrm{a}\:\mathrm{distance}\:\mathrm{from}\:\mathrm{the}\:\mathrm{centre}\:\mathrm{of}\:\mathrm{the}\:\mathrm{metal} \\ $$$$\mathrm{sphere}.\:\mathrm{The}\:\mathrm{gravitational}\:\mathrm{field}\:\mathrm{at}\:\mathrm{that}\:\mathrm{point}\:\mathrm{is} \\ $$$$\left(\mathrm{a}\right)\:\frac{{GM}}{{R}^{\mathrm{2}} }\:\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{8}\left(\mathrm{1}−\frac{\mathrm{2}{R}}{{a}}\right)^{\mathrm{2}} }\right) \\ $$$$\left(\mathrm{b}\right)\:\frac{{GM}}{{a}^{\mathrm{2}} }\:\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{8}\left(\mathrm{1}−\frac{{R}}{\mathrm{2}{a}}\right)^{\mathrm{2}} }\right) \\ $$$$\left(\mathrm{c}\right)\:\frac{{GM}}{\left({R}+{a}\right)^{\mathrm{2}} }\:\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{8}\left(\mathrm{1}−\frac{{R}}{\mathrm{2}{a}}\right)^{\mathrm{2}} }\right) \\ $$$$\left(\mathrm{d}\right)\:\frac{{GM}}{\left({R}−{a}\right)^{\mathrm{2}} }\:\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{8}\left(\mathrm{1}−\frac{\mathrm{2}{a}}{{R}}\right)^{\mathrm{2}} }\right) \\ $$

Commented by MadhumitaSamanta last updated on 13/Jul/22

Answered by aleks041103 last updated on 13/Jul/22

We can say that the metal element is  a superposition of a sphere of radius R   and mass m and a sphere of diameter R  and mass −(m/8)  ⇒F=((Gm)/a^2 )+((G(−(m/8)))/((a−R/2)^2 ))=((Gm)/a^2 )(1−(1/(8(1−(R/(2a)))^2 )))  ⇒Ans. (b)

$${We}\:{can}\:{say}\:{that}\:{the}\:{metal}\:{element}\:{is} \\ $$$${a}\:{superposition}\:{of}\:{a}\:{sphere}\:{of}\:{radius}\:{R}\: \\ $$$${and}\:{mass}\:{m}\:{and}\:{a}\:{sphere}\:{of}\:{diameter}\:{R} \\ $$$${and}\:{mass}\:−\frac{{m}}{\mathrm{8}} \\ $$$$\Rightarrow{F}=\frac{{Gm}}{{a}^{\mathrm{2}} }+\frac{{G}\left(−\frac{{m}}{\mathrm{8}}\right)}{\left({a}−{R}/\mathrm{2}\right)^{\mathrm{2}} }=\frac{{Gm}}{{a}^{\mathrm{2}} }\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{8}\left(\mathrm{1}−\frac{{R}}{\mathrm{2}{a}}\right)^{\mathrm{2}} }\right) \\ $$$$\Rightarrow{Ans}.\:\left({b}\right) \\ $$

Commented by Tawa11 last updated on 13/Jul/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com