Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 173566 by Khalmohmmad last updated on 13/Jul/22

Answered by MJS_new last updated on 13/Jul/22

x=0∨x=−∞

$${x}=\mathrm{0}\vee{x}=−\infty \\ $$

Answered by mr W last updated on 13/Jul/22

obvious: x=0  or using Lambert W−function:  ((3/2))^x =1−(x/2)  ((9/4))((9/4))^((x/2)−1) =1−(x/2)  (9/4)ln (9/4)=[(1−(x/2))ln (9/4)]e^((1−(x/2))ln (9/4))   W((9/4)ln (9/4))=(1−(x/2))ln (9/4)  x=2[1−(1/(ln (9/4)))W((9/4)ln (9/4))]  ⇒x=2−((W((9/2)ln (3/2)))/(ln (3/2)))=0

$${obvious}:\:{x}=\mathrm{0} \\ $$$${or}\:{using}\:{Lambert}\:{W}−{function}: \\ $$$$\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{{x}} =\mathrm{1}−\frac{{x}}{\mathrm{2}} \\ $$$$\left(\frac{\mathrm{9}}{\mathrm{4}}\right)\left(\frac{\mathrm{9}}{\mathrm{4}}\right)^{\frac{{x}}{\mathrm{2}}−\mathrm{1}} =\mathrm{1}−\frac{{x}}{\mathrm{2}} \\ $$$$\frac{\mathrm{9}}{\mathrm{4}}\mathrm{ln}\:\frac{\mathrm{9}}{\mathrm{4}}=\left[\left(\mathrm{1}−\frac{{x}}{\mathrm{2}}\right)\mathrm{ln}\:\frac{\mathrm{9}}{\mathrm{4}}\right]{e}^{\left(\mathrm{1}−\frac{{x}}{\mathrm{2}}\right)\mathrm{ln}\:\frac{\mathrm{9}}{\mathrm{4}}} \\ $$$${W}\left(\frac{\mathrm{9}}{\mathrm{4}}\mathrm{ln}\:\frac{\mathrm{9}}{\mathrm{4}}\right)=\left(\mathrm{1}−\frac{{x}}{\mathrm{2}}\right)\mathrm{ln}\:\frac{\mathrm{9}}{\mathrm{4}} \\ $$$${x}=\mathrm{2}\left[\mathrm{1}−\frac{\mathrm{1}}{\mathrm{ln}\:\frac{\mathrm{9}}{\mathrm{4}}}{W}\left(\frac{\mathrm{9}}{\mathrm{4}}\mathrm{ln}\:\frac{\mathrm{9}}{\mathrm{4}}\right)\right] \\ $$$$\Rightarrow{x}=\mathrm{2}−\frac{{W}\left(\frac{\mathrm{9}}{\mathrm{2}}\mathrm{ln}\:\frac{\mathrm{3}}{\mathrm{2}}\right)}{\mathrm{ln}\:\frac{\mathrm{3}}{\mathrm{2}}}=\mathrm{0} \\ $$

Commented by Tawa11 last updated on 13/Jul/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Answered by a.lgnaoui last updated on 14/Jul/22

2^x −3^x =(x/2)2^x   (2^x −3^x )^2 =(x^2 /4)2^(2x )   ⇒2^(2x) +3^(2x) −2×2^x ×3^x =((x/2)2^x )^2   (2^x −3^x )^2 −((x/2)2^x )^2 =0 ⇒  [2^x −3^x −2^x (x/2)][2^x −3^x +2^x (x/2)]=0    2^x −3^x =±2^x (x/2)   3^x =2^x (1−(x/2))     (1)  3^x =2^x (1+(x/2))     (2)  (1)/(2)⇒   1=((1−(x/2))/(1+(x/2)))   ⇒x=0

$$\mathrm{2}^{\mathrm{x}} −\mathrm{3}^{\mathrm{x}} =\frac{\mathrm{x}}{\mathrm{2}}\mathrm{2}^{\mathrm{x}} \\ $$$$\left(\mathrm{2}^{\mathrm{x}} −\mathrm{3}^{\mathrm{x}} \right)^{\mathrm{2}} =\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{4}}\mathrm{2}^{\mathrm{2x}\:} \:\:\Rightarrow\mathrm{2}^{\mathrm{2}{x}} +\mathrm{3}^{\mathrm{2}{x}} −\mathrm{2}×\mathrm{2}^{{x}} ×\mathrm{3}^{{x}} =\left(\frac{{x}}{\mathrm{2}}\mathrm{2}^{{x}} \right)^{\mathrm{2}} \\ $$$$\left(\mathrm{2}^{{x}} −\mathrm{3}^{{x}} \right)^{\mathrm{2}} −\left(\frac{{x}}{\mathrm{2}}\mathrm{2}^{{x}} \right)^{\mathrm{2}} =\mathrm{0}\:\Rightarrow \\ $$$$\left[\mathrm{2}^{{x}} −\mathrm{3}^{{x}} −\mathrm{2}^{{x}} \frac{{x}}{\mathrm{2}}\right]\left[\mathrm{2}^{{x}} −\mathrm{3}^{{x}} +\mathrm{2}^{{x}} \frac{{x}}{\mathrm{2}}\right]=\mathrm{0} \\ $$$$\:\:\mathrm{2}^{{x}} −\mathrm{3}^{{x}} =\pm\mathrm{2}^{{x}} \frac{{x}}{\mathrm{2}}\: \\ $$$$\mathrm{3}^{{x}} =\mathrm{2}^{{x}} \left(\mathrm{1}−\frac{{x}}{\mathrm{2}}\right)\:\:\:\:\:\left(\mathrm{1}\right) \\ $$$$\mathrm{3}^{{x}} =\mathrm{2}^{{x}} \left(\mathrm{1}+\frac{{x}}{\mathrm{2}}\right)\:\:\:\:\:\left(\mathrm{2}\right) \\ $$$$\left(\mathrm{1}\right)/\left(\mathrm{2}\right)\Rightarrow\:\:\:\mathrm{1}=\frac{\mathrm{1}−\frac{{x}}{\mathrm{2}}}{\mathrm{1}+\frac{{x}}{\mathrm{2}}}\:\:\:\Rightarrow{x}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$

Commented by a.lgnaoui last updated on 14/Jul/22

think Sir.

$${think}\:{Sir}. \\ $$

Commented by mr W last updated on 14/Jul/22

i don′t think this method is correct sir.  the original eqn. is just  2^x −3^x =2^x (x/2).  but through squaring you changed it to  two equations:    2^x −3^x =±2^x (x/2).  and then you treat these two equations   as an equation system and  divide eqn.1 with eqn. 2.   basically you did something like following:  question is to solve x^3 −3x−2=0    x^3 −2x=x+2  (x^3 −2x)^2 =(x+2)^2   (x^3 −2x)^2 −(x+2)^2 =0  (x^3 −2x−x−2)(x^3 −2x+x+2)=0   { ((x^3 −3x−2=0 ⇒x^3 −x=2x+2    ...(i))),((x^3 −x+2=0 ⇒x^3 −x=−2   ...(ii))) :}  (i)/(ii):  ((x^3 −x)/(x^3 −x))=((2x+2)/(−2))=1  2x+2=−2  ⇒x=−2  this solution is certainly wrong.

$${i}\:{don}'{t}\:{think}\:{this}\:{method}\:{is}\:{correct}\:{sir}. \\ $$$${the}\:{original}\:{eqn}.\:{is}\:{just} \\ $$$$\mathrm{2}^{{x}} −\mathrm{3}^{{x}} =\mathrm{2}^{{x}} \frac{{x}}{\mathrm{2}}. \\ $$$${but}\:{through}\:{squaring}\:{you}\:{changed}\:{it}\:{to} \\ $$$${two}\:{equations}: \\ $$$$\:\:\mathrm{2}^{{x}} −\mathrm{3}^{{x}} =\pm\mathrm{2}^{{x}} \frac{{x}}{\mathrm{2}}. \\ $$$${and}\:{then}\:{you}\:{treat}\:{these}\:{two}\:{equations}\: \\ $$$${as}\:{an}\:{equation}\:{system}\:{and} \\ $$$${divide}\:{eqn}.\mathrm{1}\:{with}\:{eqn}.\:\mathrm{2}.\: \\ $$$${basically}\:{you}\:{did}\:{something}\:{like}\:{following}: \\ $$$${question}\:{is}\:{to}\:{solve}\:{x}^{\mathrm{3}} −\mathrm{3}{x}−\mathrm{2}=\mathrm{0} \\ $$$$ \\ $$$${x}^{\mathrm{3}} −\mathrm{2}{x}={x}+\mathrm{2} \\ $$$$\left({x}^{\mathrm{3}} −\mathrm{2}{x}\right)^{\mathrm{2}} =\left({x}+\mathrm{2}\right)^{\mathrm{2}} \\ $$$$\left({x}^{\mathrm{3}} −\mathrm{2}{x}\right)^{\mathrm{2}} −\left({x}+\mathrm{2}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\left({x}^{\mathrm{3}} −\mathrm{2}{x}−{x}−\mathrm{2}\right)\left({x}^{\mathrm{3}} −\mathrm{2}{x}+{x}+\mathrm{2}\right)=\mathrm{0} \\ $$$$\begin{cases}{{x}^{\mathrm{3}} −\mathrm{3}{x}−\mathrm{2}=\mathrm{0}\:\Rightarrow{x}^{\mathrm{3}} −{x}=\mathrm{2}{x}+\mathrm{2}\:\:\:\:...\left({i}\right)}\\{{x}^{\mathrm{3}} −{x}+\mathrm{2}=\mathrm{0}\:\Rightarrow{x}^{\mathrm{3}} −{x}=−\mathrm{2}\:\:\:...\left({ii}\right)}\end{cases} \\ $$$$\left({i}\right)/\left({ii}\right): \\ $$$$\frac{{x}^{\mathrm{3}} −{x}}{{x}^{\mathrm{3}} −{x}}=\frac{\mathrm{2}{x}+\mathrm{2}}{−\mathrm{2}}=\mathrm{1} \\ $$$$\mathrm{2}{x}+\mathrm{2}=−\mathrm{2} \\ $$$$\Rightarrow{x}=−\mathrm{2} \\ $$$${this}\:{solution}\:{is}\:{certainly}\:{wrong}. \\ $$

Commented by mr W last updated on 14/Jul/22

you are welcome!

$${you}\:{are}\:{welcome}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com