Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 173574 by mr W last updated on 13/Jul/22

solve for x∈R  ((5x−3)/(3x−5))=x^4

solveforxR5x33x5=x4

Commented by kaivan.ahmadi last updated on 14/Jul/22

⇒((3x^5 −5x^4 −5x+3)/(3x−5))=0  3x^5 −5x^4 −5x+3=0  ⇒3(x^5 +1)−5x(x^3 +1)=0  ⇒3(x+1)(x^4 −x^3 +x^2 −x+1)−5x(x+1)(x^2 −x+1)=0  ⇒(x+1)(3x^4 −3x^3 +3x^2 −3x+3−5x^3 +5x^2 −5x)=0  ⇒(x+1)(3x^4 −8x^3 +8x^2 −8x+3)=0  ⇒{_(3x^4 −8x^3 +8x^2 −8x+3=0) ^(x+1=0⇒x=−1)   now we solve :3x^4 −8x^3 +8x^2 −8x+3=0

3x55x45x+33x5=03x55x45x+3=03(x5+1)5x(x3+1)=03(x+1)(x4x3+x2x+1)5x(x+1)(x2x+1)=0(x+1)(3x43x3+3x23x+35x3+5x25x)=0(x+1)(3x48x3+8x28x+3)=0{3x48x3+8x28x+3=0x+1=0x=1nowwesolve:3x48x3+8x28x+3=0

Commented by aleks041103 last updated on 14/Jul/22

x^5 +1=(x+1)(x^4 −x^3 +x^2 −x+1)

x5+1=(x+1)(x4x3+x2x+1)

Commented by kaivan.ahmadi last updated on 14/Jul/22

thank you

thankyou

Commented by mr W last updated on 14/Jul/22

thanks for trying sir!

thanksfortryingsir!

Answered by CElcedricjunior last updated on 13/Jul/22

{1}

{1}

Commented by mr W last updated on 14/Jul/22

wrong.  please show how you solved sir.

wrong.pleaseshowhowyousolvedsir.

Answered by aleks041103 last updated on 14/Jul/22

5x−3=3x^5 −5x^4   3x^5 −5x^4 −5x+3=0  3(x^5 +1)−5x(x^3 +1)=0  3(x+1)(x^4 −x^3 +x^2 −x+1)−5x(x+1)(x^2 −x+1)=0  (x+1)(3x^4 −3x^3 +3x^2 −3x+3−5x^3 +5x^2 −5x)=0  (x+1)(3x^4 −8x^3 +8x^2 −8x+3)=0  3x^4 −8x^3 +8x^2 −8x+3=0  3x^2 −8x+8−(8/x)+(3/x^2 )=0  3(x^2 +(1/x^2 ))−8(x+(1/x))+8=0  (x+(1/x))^2 =2+x^2 +(1/x^2 )  ⇒x+(1/x)=t  ⇒3(t^2 −2)−8t+8=0  3t^2 −8t+2=0  t_(1/2) =((8±(√(64−24)))/6)=((8±4(√(10)))/6)=((4±2(√(10)))/3)  x^2 −tx+1=0  x_(1/2) =((t±(√(t^2 −4)))/2)  3t^2 −8t+2=0⇒t^2 =(8/3)t−(2/3)  ⇒t^2 −4=((8t−14)/3)=((32±16(√(10))−14)/3)=6±((16(√(10)))/3)>0  t^2 −4=(√((324)/9))±(√((2560)/9))>0  ⇒t^2 −4=6+((16)/3)(√(10))  ⇒x_(1/2) =(1/2)(((4+2(√(10)))/3)±(√((18+16(√(10)))/3)))  ⇒x=−1;(1/2)(((4+2(√(10)))/3)±(√((18+16(√(10)))/3)))

5x3=3x55x43x55x45x+3=03(x5+1)5x(x3+1)=03(x+1)(x4x3+x2x+1)5x(x+1)(x2x+1)=0(x+1)(3x43x3+3x23x+35x3+5x25x)=0(x+1)(3x48x3+8x28x+3)=03x48x3+8x28x+3=03x28x+88x+3x2=03(x2+1x2)8(x+1x)+8=0(x+1x)2=2+x2+1x2x+1x=t3(t22)8t+8=03t28t+2=0t1/2=8±64246=8±4106=4±2103x2tx+1=0x1/2=t±t2423t28t+2=0t2=83t23t24=8t143=32±1610143=6±16103>0t24=3249±25609>0t24=6+16310x1/2=12(4+2103±18+16103)x=1;12(4+2103±18+16103)

Commented by mr W last updated on 14/Jul/22

thanks you sir! nice solution!

thanksyousir!nicesolution!

Answered by Rasheed.Sindhi last updated on 14/Jul/22

((5x−3)/(3x−5))=x^4   (((5x−3)+(3x−5))/((5x−3)−(3x−5)))=((x^4 +1)/(x^4 −1)) [componendo-_(dividendo...)   ((8x−8)/(2x+2))=((x^4 +1)/((x−1)(x+1)(x^2 +1)))  ((8(x−1))/(2(x+1)))=((x^4 +1)/((x−1)(x+1)(x^2 +1)))  4(x−1)^2 (x+1)(x^2 +1)−(x+1)(x^4 +1)=0  (x+1){4(x−1)^2 (x^2 +1)−(x^4 +1)}=0  x+1=0 ∣ 3x^4 −8x^3 +8x^2 −8x+3=0  x=−1 ∣ 3(x^2 +(1/x^2 ))−8(x+(1/x))+8=0  x+(1/x)=y⇒x^2 +(1/x^2 )=y^2 −2           3(y^2 −2)−8y+8=0           3y^2 −8y+2=0  For solution of this equation please  see sir mr W ′s answer.

5x33x5=x4(5x3)+(3x5)(5x3)(3x5)=x4+1x41[componendodividendo...8x82x+2=x4+1(x1)(x+1)(x2+1)8(x1)2(x+1)=x4+1(x1)(x+1)(x2+1)4(x1)2(x+1)(x2+1)(x+1)(x4+1)=0(x+1){4(x1)2(x2+1)(x4+1)}=0x+1=03x48x3+8x28x+3=0x=13(x2+1x2)8(x+1x)+8=0x+1x=yx2+1x2=y223(y22)8y+8=03y28y+2=0ForsolutionofthisequationpleaseseesirmrWsanswer.

Answered by mr W last updated on 14/Jul/22

3x^5 +3−5x^4 −5x=0  3(x^5 +1)−5x(x^3 +1)=0  (x+1)[3(x^4 −x^3 +x^2 −x+1)−5x(x^2 −x+1)]=0  (x+1)[3x^4 +3−8x^3 +8x^2 −8x]=0  (x+1)[3(x^2 +(1/x^2 ))−8(x+(1/x))+8]=0  (x+1)[3(x+(1/x))^2 −8(x+(1/x))+2]=0  x+1=0  ⇒x=−1 ✓  3(x+(1/x))^2 −8(x+(1/x))+2=0  ⇒x+(1/x)=((4+(√(10)))/3)  (((4−(√(10)))/3)<2 rejected)  x^2 −((4+(√(10)))/3)x+1=0  ⇒x=((4+(√(10))±(√(8(√(10))−10)))/6) ✓

3x5+35x45x=03(x5+1)5x(x3+1)=0(x+1)[3(x4x3+x2x+1)5x(x2x+1)]=0(x+1)[3x4+38x3+8x28x]=0(x+1)[3(x2+1x2)8(x+1x)+8]=0(x+1)[3(x+1x)28(x+1x)+2]=0x+1=0x=13(x+1x)28(x+1x)+2=0x+1x=4+103(4103<2rejected)x24+103x+1=0x=4+10±810106

Answered by Tawa11 last updated on 14/Jul/22

Great sirs

Greatsirs

Terms of Service

Privacy Policy

Contact: info@tinkutara.com