Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 173629 by mnjuly1970 last updated on 15/Jul/22

Commented by mnjuly1970 last updated on 15/Jul/22

    solve  for   R   a,b,c ? ⇑⇑⇑

solveforRa,b,c?⇑⇑⇑

Commented by Tawa11 last updated on 15/Jul/22

Great sirs

Greatsirs

Answered by mahdipoor last updated on 15/Jul/22

a^3 +b^3 =(a+b)(a^2 +b^2 −ab)=  a+b+(c)=a+b+(a+b)=2(a+b)  i⇒a+b=0 ⇒ a=k , b=−k , c=0  (a^2 +b^2 =b+c) ⇒ 2k^2 =−k ⇒ k=0 or −(1/2)  ⇒⇒ ((a),(b),(c) ) = ((0),(0),(0) )  or  (((−0.5)),((0.5)),(0) )  ii⇒a+b≠0 ⇒ 2=(a^2 +b^2 )−ab=b+(c)−ab  =2b+a−ab ⇒2b+a−ab−2=0 ⇒  (a−2)(1−b)=0 ⇒  1)if a=2 ⇒ c=2+b & 4+b^2 =b+c ⇒  4+b^2 =2b+2⇒b^2 −2b+2=0 ⇒ ∄b∈R  2)if b=1 ⇒ c=1+a & 1+a^2 =1+c ⇒  1+a^2 =2+a⇒a^2 −a−1=0 ⇒a=((1±(√5))/2)  ⇒⇒ ((a),(b),(c) ) = ((((1±(√5))/2)),(1),(((3±(√5))/2)) )

a3+b3=(a+b)(a2+b2ab)=a+b+(c)=a+b+(a+b)=2(a+b)ia+b=0a=k,b=k,c=0(a2+b2=b+c)2k2=kk=0or12⇒⇒(abc)=(000)or(0.50.50)iia+b02=(a2+b2)ab=b+(c)ab=2b+aab2b+aab2=0(a2)(1b)=01)ifa=2c=2+b&4+b2=b+c4+b2=2b+2b22b+2=0bR2)ifb=1c=1+a&1+a2=1+c1+a2=2+aa2a1=0a=1±52⇒⇒(abc)=(1±5213±52)

Answered by MJS_new last updated on 15/Jul/22

obviously a=b=c=0  c=a+b  b=pa   { (((p^2 +1)a^2 −(2p+1)a=0)),(((p^3 +1)a^3 −2(p+1)a=0)) :}  a≠0   { (((p^2 +1)a−2p−1=0)),(((p+1)((p^2 −p+1)a^2 −2)=0)) :}  p_1 =−1 ⇒ a_1 =−(1/2)∧b_1 =(1/2)∧c_1 =0  a=((2p+1)/(p^2 +1))  p^4 −(3/2)p^2 +(3/2)p−(1/2)=0  (p^2 +p−1)(p^2 −p+(1/2))=0  p_2 =−(1/2)−((√5)/2) ⇒ a_2 =(1/2)−((√5)/2)∧b_2 =1∧c_2 =(3/2)−((√5)/2)  p_3 =−(1/2)+((√5)/2) ⇒ a_3 =(1/2)+((√5)/2)∧b_3 =1∧c_3 =(3/2)+((√5)/2)  (p_(4, 5) =(1/2)±(1/2)i)

obviouslya=b=c=0c=a+bb=pa{(p2+1)a2(2p+1)a=0(p3+1)a32(p+1)a=0a0{(p2+1)a2p1=0(p+1)((p2p+1)a22)=0p1=1a1=12b1=12c1=0a=2p+1p2+1p432p2+32p12=0(p2+p1)(p2p+12)=0p2=1252a2=1252b2=1c2=3252p3=12+52a3=12+52b3=1c3=32+52(p4,5=12±12i)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com