Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 173678 by mathlove last updated on 16/Jul/22

if f(x) is 2^(nd)  digre function     f(x−1)+f(x)+f(x+1)=x^2 +1  then faind  f(2)=?

iff(x)is2nddigrefunctionf(x1)+f(x)+f(x+1)=x2+1thenfaindf(2)=?

Answered by Rasheed.Sindhi last updated on 16/Jul/22

f(x)=ax^2 +bx+c (say)  f(x−1)=a(x−1)^2 +b(x−1)+c                  =ax^2 −2ax+a+bx−b+c                  =ax^2 +(b−2a)x+a−b+c  f(x+1)=a(x+1)^2 +b(x+1)+c                   =ax^2 +2ax+a+bx+b+c                   =ax^2 +(b+2a)x+a+b+c    f(x−1)+f(x)+f(x+1)     =(ax^2 +(b−2a)x+a−b+c)             +(ax^2 +bx+c)                    +(ax^2 +(b+2a)x+a+b+c)                                                               =x^2 +1  3ax^2 +3bx+2a+3c=x^2 +0x+1  3a=1,3b=0,2a+3c=1  a=1/3 ,b=0, 2(1/3)+3c=1                              c=1/9  f(x)=ax^2 +bx+c=(1/3)x^2 +(1/9)=((3x^2 +1)/9)  f(2)=((3(2)^2 +1)/9)=((13)/9)

f(x)=ax2+bx+c(say)f(x1)=a(x1)2+b(x1)+c=ax22ax+a+bxb+c=ax2+(b2a)x+ab+cf(x+1)=a(x+1)2+b(x+1)+c=ax2+2ax+a+bx+b+c=ax2+(b+2a)x+a+b+cf(x1)+f(x)+f(x+1)=(ax2+(b2a)x+ab+c)+(ax2+bx+c)+(ax2+(b+2a)x+a+b+c)=x2+13ax2+3bx+2a+3c=x2+0x+13a=1,3b=0,2a+3c=1a=1/3,b=0,2(1/3)+3c=1c=1/9f(x)=ax2+bx+c=13x2+19=3x2+19f(2)=3(2)2+19=139

Commented by mathlove last updated on 16/Jul/22

a lot of thinks heve you launge life

alotofthinksheveyoulaungelife

Commented by Rasheed.Sindhi last updated on 16/Jul/22

ThanX,  you′ve too sir!

ThanX,youvetoosir!

Commented by Tawa11 last updated on 16/Jul/22

Great sir

Greatsir

Answered by Rasheed.Sindhi last updated on 16/Jul/22

 determinant (((AnOther  Way)))  Let f(x)=ax^2 +bx+c    f(−2)=4a−2b+c........(i)  f(−1)=a−b+c...........(ii)  f(0)=c.........................(iii)  f(1)=a+b+c................(iv)  f(2)=4a+2b+c...........(v)    (i)+(ii)+(iii):  f(−2)+f(−1)+f(0)=(−1)^2 +1  5a−3b+3c=2..................A  (ii)+(iii)+(iv):  f(−1)+f(0)+f(1)=0^2 +1  2a+3c=1..........................B  (iii)+(iv)+(v):  f(0)+f(1)+f(2)=1^2 +1=2  5a+3b+3c=2.....................C    C−A: 6b=0⇒b=0   {: ((A=C:    5a+3c=2)),((B:            2a+3c=1)) }⇒ { ((3a=1⇒a=(1/3))),((c=(1/9))) :}  f(x)=ax^2 +bx+c=(1/3)x^2 +0x+(1/9)          =((3x^2 +1)/9)

AnOtherWayLetf(x)=ax2+bx+cf(2)=4a2b+c........(i)f(1)=ab+c...........(ii)f(0)=c.........................(iii)f(1)=a+b+c................(iv)f(2)=4a+2b+c...........(v)(i)+(ii)+(iii):f(2)+f(1)+f(0)=(1)2+15a3b+3c=2..................A(ii)+(iii)+(iv):f(1)+f(0)+f(1)=02+12a+3c=1..........................B(iii)+(iv)+(v):f(0)+f(1)+f(2)=12+1=25a+3b+3c=2.....................CCA:6b=0b=0A=C:5a+3c=2B:2a+3c=1}{3a=1a=13c=19f(x)=ax2+bx+c=13x2+0x+19=3x2+19

Commented by mathlove last updated on 16/Jul/22

pleas sir see this work  f(x−1)+f(x)+f(x−1)=f(2)  f(x−1+x+x+1)=f(2)  f(3x)=f(2)⇒3x=2⇒x=(2/3)  we have x^2 +1  ((2/3))^2 +1=(4/9)+1=((13)/9)

pleassirseethisworkf(x1)+f(x)+f(x1)=f(2)f(x1+x+x+1)=f(2)f(3x)=f(2)3x=2x=23wehavex2+1(23)2+1=49+1=139

Commented by Rasheed.Sindhi last updated on 16/Jul/22

I didn′t understand:  f(x−1)+f(x)+f(x+1)            =^(?) f(x−1+x+x+1)=^(?) f(2)  Could you determine f(3) etc  using above approach?

Ididntunderstand:f(x1)+f(x)+f(x+1)=?f(x1+x+x+1)=?f(2)Couldyoudeterminef(3)etcusingaboveapproach?

Commented by mathlove last updated on 17/Jul/22

thats ok wrung way

thatsokwrungway

Commented by Tawa11 last updated on 17/Jul/22

Great sir

Greatsir

Answered by pablo1234523 last updated on 16/Jul/22

f(x)=k(x−a)(x−b)  f(x−1)=k(x−(a+1))(x−(b+1))  f(x+1)=k(x−(a−1))(x−(b−1))  f(x−1)+f(x)+f(x+1)=x^2 +1  ⇒k(x−a)(x−b)+k(x−(a+1))(x−(b+1))+k(x−(a−1))(x−(b−1))=x^2 +1    sum of constant terms:  ab+ab+a+b+1+ab−a−b+1=1/k  ⇒3ab=(1−2k)/k  ⇒ab=((1−2k)/(3k))  sum of coefficient of x:  (a+b)+(a+b+2)+(a+b−2)=0  3(a+b)=0  a=−b  sum of coefficient of x^2 :  k+k+k=1  ⇒3k=1  ⇒k=(1/3)    ∴ b^2 =((−1)/3)⇒b=(i/( (√3)))⇒a=−(i/( (√3)))  f(x)=(1/3)(x−(i/( (√3))))(x+(i/( (√3))))=(1/3)(x^2 +(1/3))  f(2)=(1/3)(4+(1/3))=((13)/9)

f(x)=k(xa)(xb)f(x1)=k(x(a+1))(x(b+1))f(x+1)=k(x(a1))(x(b1))f(x1)+f(x)+f(x+1)=x2+1k(xa)(xb)+k(x(a+1))(x(b+1))+k(x(a1))(x(b1))=x2+1sumofconstantterms:ab+ab+a+b+1+abab+1=1/k3ab=(12k)/kab=12k3ksumofcoefficientofx:(a+b)+(a+b+2)+(a+b2)=03(a+b)=0a=bsumofcoefficientofx2:k+k+k=13k=1k=13b2=13b=i3a=i3f(x)=13(xi3)(x+i3)=13(x2+13)f(2)=13(4+13)=139

Commented by mathlove last updated on 17/Jul/22

thinks

thinks

Terms of Service

Privacy Policy

Contact: info@tinkutara.com