Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 173707 by dragan91 last updated on 16/Jul/22

Let x,y∈R such that 2x^2 +3y^2 =5  Find the minimum and  maximum of expression:  P=x^3 −y^3 +x−2y

$$\mathrm{Let}\:\mathrm{x},\mathrm{y}\in\mathbb{R}\:\mathrm{such}\:\mathrm{that}\:\mathrm{2x}^{\mathrm{2}} +\mathrm{3y}^{\mathrm{2}} =\mathrm{5} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{and} \\ $$$$\mathrm{maximum}\:\mathrm{of}\:\mathrm{expression}: \\ $$$$\mathrm{P}=\mathrm{x}^{\mathrm{3}} −\mathrm{y}^{\mathrm{3}} +\mathrm{x}−\mathrm{2y} \\ $$

Answered by a.lgnaoui last updated on 17/Jul/22

  ((d(P))/dx)+((d(P))/dy)=3x^2 +1−3y^2 −2  =3x^2 −3y^2 −1    3y^2 =5−2x^2   3x^2 −1−(5−2x^2 )=5x^2 −6    the maximum  and minimum of  P verify  P′(x)=0  5x^2 −6=0    x=±(√(6/5))   x=±(√(6/5))     y=(√((5−2(6/5))/3))=(√((13)/(15)))  m=(−(√((6/5),))(√((13)/(15))) )  max=(+(√(6/5)),(√((13)/(15))))

$$ \\ $$$$\frac{{d}\left(\mathrm{P}\right)}{{dx}}+\frac{{d}\left(\mathrm{P}\right)}{{dy}}=\mathrm{3}{x}^{\mathrm{2}} +\mathrm{1}−\mathrm{3}{y}^{\mathrm{2}} −\mathrm{2} \\ $$$$=\mathrm{3}{x}^{\mathrm{2}} −\mathrm{3}{y}^{\mathrm{2}} −\mathrm{1}\:\:\:\:\mathrm{3}{y}^{\mathrm{2}} =\mathrm{5}−\mathrm{2}{x}^{\mathrm{2}} \\ $$$$\mathrm{3}{x}^{\mathrm{2}} −\mathrm{1}−\left(\mathrm{5}−\mathrm{2}{x}^{\mathrm{2}} \right)=\mathrm{5}{x}^{\mathrm{2}} −\mathrm{6}\:\: \\ $$$${the}\:{maximum}\:\:{and}\:{minimum}\:{of}\:\:\mathrm{P}\:{verify}\:\:\mathrm{P}'\left({x}\right)=\mathrm{0} \\ $$$$\mathrm{5}{x}^{\mathrm{2}} −\mathrm{6}=\mathrm{0}\:\:\:\:{x}=\pm\sqrt{\frac{\mathrm{6}}{\mathrm{5}}}\: \\ $$$${x}=\pm\sqrt{\frac{\mathrm{6}}{\mathrm{5}}}\:\:\:\:\:{y}=\sqrt{\left(\mathrm{5}−\mathrm{2}\frac{\mathrm{6}}{\mathrm{5}}\right)/\mathrm{3}}=\sqrt{\frac{\mathrm{13}}{\mathrm{15}}} \\ $$$${m}=\left(−\sqrt{\frac{\mathrm{6}}{\mathrm{5}},}\sqrt{\frac{\mathrm{13}}{\mathrm{15}}}\:\right)\:\:{max}=\left(+\sqrt{\frac{\mathrm{6}}{\mathrm{5}}},\sqrt{\frac{\mathrm{13}}{\mathrm{15}}}\right) \\ $$

Commented by mr W last updated on 17/Jul/22

i think your method is wrong.  for conditional extremums it doesn′t  hold that (∂P/∂x)=0 ∧ (∂P/∂y)=0, or (∂P/∂x)+(∂P/∂y)=0  as you said.

$${i}\:{think}\:{your}\:{method}\:{is}\:{wrong}. \\ $$$${for}\:{conditional}\:{extremums}\:{it}\:{doesn}'{t} \\ $$$${hold}\:{that}\:\frac{\partial{P}}{\partial{x}}=\mathrm{0}\:\wedge\:\frac{\partial{P}}{\partial{y}}=\mathrm{0},\:{or}\:\frac{\partial{P}}{\partial{x}}+\frac{\partial{P}}{\partial{y}}=\mathrm{0} \\ $$$${as}\:{you}\:{said}. \\ $$

Answered by mr W last updated on 17/Jul/22

G=x^3 −y^3 +x−2y+λ(2x^2 +3y^2 −5)  (∂G/∂x)=3x^2 +1+4λx=0 ⇒x=((−2λ±(√(4λ^2 −3)))/3)  (∂G/∂y)=−3y^2 −2+6λy=0 ⇒y=((3λ±(√(9λ^2 −6)))/3)  (∂G/∂λ)=2x^2 +3y^2 −5=0  ⇒2[((−2λ±(√(4λ^2 −3)))/3)]^2 +3[((3λ±(√(9λ^2 −6)))/3)]^2 −5=0  that′s 4 equations which all can′t  be solved exactly.  we get approximately  λ=−1.3191, P=5.8033=max  λ=0.8872, P=−4.9111  λ=−0.8872, P=4.9111  λ=1.3191, P=−5.8033=min

$${G}={x}^{\mathrm{3}} −{y}^{\mathrm{3}} +{x}−\mathrm{2}{y}+\lambda\left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{3}{y}^{\mathrm{2}} −\mathrm{5}\right) \\ $$$$\frac{\partial{G}}{\partial{x}}=\mathrm{3}{x}^{\mathrm{2}} +\mathrm{1}+\mathrm{4}\lambda{x}=\mathrm{0}\:\Rightarrow{x}=\frac{−\mathrm{2}\lambda\pm\sqrt{\mathrm{4}\lambda^{\mathrm{2}} −\mathrm{3}}}{\mathrm{3}} \\ $$$$\frac{\partial{G}}{\partial{y}}=−\mathrm{3}{y}^{\mathrm{2}} −\mathrm{2}+\mathrm{6}\lambda{y}=\mathrm{0}\:\Rightarrow{y}=\frac{\mathrm{3}\lambda\pm\sqrt{\mathrm{9}\lambda^{\mathrm{2}} −\mathrm{6}}}{\mathrm{3}} \\ $$$$\frac{\partial{G}}{\partial\lambda}=\mathrm{2}{x}^{\mathrm{2}} +\mathrm{3}{y}^{\mathrm{2}} −\mathrm{5}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{2}\left[\frac{−\mathrm{2}\lambda\pm\sqrt{\mathrm{4}\lambda^{\mathrm{2}} −\mathrm{3}}}{\mathrm{3}}\right]^{\mathrm{2}} +\mathrm{3}\left[\frac{\mathrm{3}\lambda\pm\sqrt{\mathrm{9}\lambda^{\mathrm{2}} −\mathrm{6}}}{\mathrm{3}}\right]^{\mathrm{2}} −\mathrm{5}=\mathrm{0} \\ $$$${that}'{s}\:\mathrm{4}\:{equations}\:{which}\:{all}\:{can}'{t} \\ $$$${be}\:{solved}\:{exactly}. \\ $$$${we}\:{get}\:{approximately} \\ $$$$\lambda=−\mathrm{1}.\mathrm{3191},\:{P}=\mathrm{5}.\mathrm{8033}={max} \\ $$$$\lambda=\mathrm{0}.\mathrm{8872},\:{P}=−\mathrm{4}.\mathrm{9111} \\ $$$$\lambda=−\mathrm{0}.\mathrm{8872},\:{P}=\mathrm{4}.\mathrm{9111} \\ $$$$\lambda=\mathrm{1}.\mathrm{3191},\:{P}=−\mathrm{5}.\mathrm{8033}={min} \\ $$

Commented by mr W last updated on 17/Jul/22

Commented by Tawa11 last updated on 17/Jul/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Commented by a.lgnaoui last updated on 17/Jul/22

thank you professor

$${thank}\:{you}\:{professor} \\ $$

Answered by MJS_new last updated on 17/Jul/22

2x^2 +3y^2 =5 ⇒ y=σ((√(3(5−2x^2 )))/3)∧σ=±1  P(x)=x(x^2 +1)+σ(((2x^2 −11)(√(3(5−2x^2 ))))/9)  P ′(x)=0  3x^2 +1−σ((2(√3)x(2x^2 −7))/(3(√(5−2x^2 ))))=0  ⇒  x^6 −((211)/(70))x^4 +(8/5)x^2 −(3/(14))=0  t=x^2   t^3 −((211)/(70))t^2 +(8/5)t−(3/(14))=0  good luck! t=(3/(14)) is a solution  t=(3/(14))∨t=(7/5)±((2(√6))/5)  now it′s easy to get  min (P(x)) =−(((9+44(√6))(√5))/(45)) at x=−(((1+(√6))(√5))/5)∧y=(((3−2(√6))(√5))/(15))  max (P(x))=(((9+44(√6))(√5))/(45)) at x=(((1+(√6))(√5))/5)∧y=−(((3−2(√6))(√5))/(15))  [approximated values ≈±5.80272 at x≈±1.54266 ∧y≈±.283083]

$$\mathrm{2}{x}^{\mathrm{2}} +\mathrm{3}{y}^{\mathrm{2}} =\mathrm{5}\:\Rightarrow\:{y}=\sigma\frac{\sqrt{\mathrm{3}\left(\mathrm{5}−\mathrm{2}{x}^{\mathrm{2}} \right)}}{\mathrm{3}}\wedge\sigma=\pm\mathrm{1} \\ $$$${P}\left({x}\right)={x}\left({x}^{\mathrm{2}} +\mathrm{1}\right)+\sigma\frac{\left(\mathrm{2}{x}^{\mathrm{2}} −\mathrm{11}\right)\sqrt{\mathrm{3}\left(\mathrm{5}−\mathrm{2}{x}^{\mathrm{2}} \right)}}{\mathrm{9}} \\ $$$${P}\:'\left({x}\right)=\mathrm{0} \\ $$$$\mathrm{3}{x}^{\mathrm{2}} +\mathrm{1}−\sigma\frac{\mathrm{2}\sqrt{\mathrm{3}}{x}\left(\mathrm{2}{x}^{\mathrm{2}} −\mathrm{7}\right)}{\mathrm{3}\sqrt{\mathrm{5}−\mathrm{2}{x}^{\mathrm{2}} }}=\mathrm{0} \\ $$$$\Rightarrow \\ $$$${x}^{\mathrm{6}} −\frac{\mathrm{211}}{\mathrm{70}}{x}^{\mathrm{4}} +\frac{\mathrm{8}}{\mathrm{5}}{x}^{\mathrm{2}} −\frac{\mathrm{3}}{\mathrm{14}}=\mathrm{0} \\ $$$${t}={x}^{\mathrm{2}} \\ $$$${t}^{\mathrm{3}} −\frac{\mathrm{211}}{\mathrm{70}}{t}^{\mathrm{2}} +\frac{\mathrm{8}}{\mathrm{5}}{t}−\frac{\mathrm{3}}{\mathrm{14}}=\mathrm{0} \\ $$$$\mathrm{good}\:\mathrm{luck}!\:{t}=\frac{\mathrm{3}}{\mathrm{14}}\:\mathrm{is}\:\mathrm{a}\:\mathrm{solution} \\ $$$${t}=\frac{\mathrm{3}}{\mathrm{14}}\vee{t}=\frac{\mathrm{7}}{\mathrm{5}}\pm\frac{\mathrm{2}\sqrt{\mathrm{6}}}{\mathrm{5}} \\ $$$$\mathrm{now}\:\mathrm{it}'\mathrm{s}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{get} \\ $$$${min}\:\left({P}\left({x}\right)\right)\:=−\frac{\left(\mathrm{9}+\mathrm{44}\sqrt{\mathrm{6}}\right)\sqrt{\mathrm{5}}}{\mathrm{45}}\:\mathrm{at}\:{x}=−\frac{\left(\mathrm{1}+\sqrt{\mathrm{6}}\right)\sqrt{\mathrm{5}}}{\mathrm{5}}\wedge{y}=\frac{\left(\mathrm{3}−\mathrm{2}\sqrt{\mathrm{6}}\right)\sqrt{\mathrm{5}}}{\mathrm{15}} \\ $$$${max}\:\left({P}\left({x}\right)\right)=\frac{\left(\mathrm{9}+\mathrm{44}\sqrt{\mathrm{6}}\right)\sqrt{\mathrm{5}}}{\mathrm{45}}\:\mathrm{at}\:{x}=\frac{\left(\mathrm{1}+\sqrt{\mathrm{6}}\right)\sqrt{\mathrm{5}}}{\mathrm{5}}\wedge{y}=−\frac{\left(\mathrm{3}−\mathrm{2}\sqrt{\mathrm{6}}\right)\sqrt{\mathrm{5}}}{\mathrm{15}} \\ $$$$\left[\mathrm{approximated}\:\mathrm{values}\:\approx\pm\mathrm{5}.\mathrm{80272}\:\mathrm{at}\:{x}\approx\pm\mathrm{1}.\mathrm{54266}\:\wedge{y}\approx\pm.\mathrm{283083}\right] \\ $$

Commented by Tawa11 last updated on 17/Jul/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com