Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 173707 by dragan91 last updated on 16/Jul/22

Let x,y∈R such that 2x^2 +3y^2 =5  Find the minimum and  maximum of expression:  P=x^3 −y^3 +x−2y

Letx,yRsuchthat2x2+3y2=5Findtheminimumandmaximumofexpression:P=x3y3+x2y

Answered by a.lgnaoui last updated on 17/Jul/22

  ((d(P))/dx)+((d(P))/dy)=3x^2 +1−3y^2 −2  =3x^2 −3y^2 −1    3y^2 =5−2x^2   3x^2 −1−(5−2x^2 )=5x^2 −6    the maximum  and minimum of  P verify  P′(x)=0  5x^2 −6=0    x=±(√(6/5))   x=±(√(6/5))     y=(√((5−2(6/5))/3))=(√((13)/(15)))  m=(−(√((6/5),))(√((13)/(15))) )  max=(+(√(6/5)),(√((13)/(15))))

d(P)dx+d(P)dy=3x2+13y22=3x23y213y2=52x23x21(52x2)=5x26themaximumandminimumofPverifyP(x)=05x26=0x=±65x=±65y=(5265)/3=1315m=(65,1315)max=(+65,1315)

Commented by mr W last updated on 17/Jul/22

i think your method is wrong.  for conditional extremums it doesn′t  hold that (∂P/∂x)=0 ∧ (∂P/∂y)=0, or (∂P/∂x)+(∂P/∂y)=0  as you said.

ithinkyourmethodiswrong.forconditionalextremumsitdoesntholdthatPx=0Py=0,orPx+Py=0asyousaid.

Answered by mr W last updated on 17/Jul/22

G=x^3 −y^3 +x−2y+λ(2x^2 +3y^2 −5)  (∂G/∂x)=3x^2 +1+4λx=0 ⇒x=((−2λ±(√(4λ^2 −3)))/3)  (∂G/∂y)=−3y^2 −2+6λy=0 ⇒y=((3λ±(√(9λ^2 −6)))/3)  (∂G/∂λ)=2x^2 +3y^2 −5=0  ⇒2[((−2λ±(√(4λ^2 −3)))/3)]^2 +3[((3λ±(√(9λ^2 −6)))/3)]^2 −5=0  that′s 4 equations which all can′t  be solved exactly.  we get approximately  λ=−1.3191, P=5.8033=max  λ=0.8872, P=−4.9111  λ=−0.8872, P=4.9111  λ=1.3191, P=−5.8033=min

G=x3y3+x2y+λ(2x2+3y25)Gx=3x2+1+4λx=0x=2λ±4λ233Gy=3y22+6λy=0y=3λ±9λ263Gλ=2x2+3y25=02[2λ±4λ233]2+3[3λ±9λ263]25=0thats4equationswhichallcantbesolvedexactly.wegetapproximatelyλ=1.3191,P=5.8033=maxλ=0.8872,P=4.9111λ=0.8872,P=4.9111λ=1.3191,P=5.8033=min

Commented by mr W last updated on 17/Jul/22

Commented by Tawa11 last updated on 17/Jul/22

Great sir

Greatsir

Commented by a.lgnaoui last updated on 17/Jul/22

thank you professor

thankyouprofessor

Answered by MJS_new last updated on 17/Jul/22

2x^2 +3y^2 =5 ⇒ y=σ((√(3(5−2x^2 )))/3)∧σ=±1  P(x)=x(x^2 +1)+σ(((2x^2 −11)(√(3(5−2x^2 ))))/9)  P ′(x)=0  3x^2 +1−σ((2(√3)x(2x^2 −7))/(3(√(5−2x^2 ))))=0  ⇒  x^6 −((211)/(70))x^4 +(8/5)x^2 −(3/(14))=0  t=x^2   t^3 −((211)/(70))t^2 +(8/5)t−(3/(14))=0  good luck! t=(3/(14)) is a solution  t=(3/(14))∨t=(7/5)±((2(√6))/5)  now it′s easy to get  min (P(x)) =−(((9+44(√6))(√5))/(45)) at x=−(((1+(√6))(√5))/5)∧y=(((3−2(√6))(√5))/(15))  max (P(x))=(((9+44(√6))(√5))/(45)) at x=(((1+(√6))(√5))/5)∧y=−(((3−2(√6))(√5))/(15))  [approximated values ≈±5.80272 at x≈±1.54266 ∧y≈±.283083]

2x2+3y2=5y=σ3(52x2)3σ=±1P(x)=x(x2+1)+σ(2x211)3(52x2)9P(x)=03x2+1σ23x(2x27)352x2=0x621170x4+85x2314=0t=x2t321170t2+85t314=0goodluck!t=314isasolutiont=314t=75±265nowitseasytogetmin(P(x))=(9+446)545atx=(1+6)55y=(326)515max(P(x))=(9+446)545atx=(1+6)55y=(326)515[approximatedvalues±5.80272atx±1.54266y±.283083]

Commented by Tawa11 last updated on 17/Jul/22

Great sir

Greatsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com