Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 17373 by mrW1 last updated on 04/Jul/17

Find the point in interior of a convex  quadrilateral such that the sum of its  distances to the 4 vertices is minimal.    Find the point in interior of a convex  quadrilateral such that the sum of its  distances to the 4 sides is minimal.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{point}\:\mathrm{in}\:\mathrm{interior}\:\mathrm{of}\:\mathrm{a}\:\mathrm{convex} \\ $$$$\mathrm{quadrilateral}\:\mathrm{such}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{its} \\ $$$$\mathrm{distances}\:\mathrm{to}\:\mathrm{the}\:\mathrm{4}\:\mathrm{vertices}\:\mathrm{is}\:\mathrm{minimal}. \\ $$$$ \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{point}\:\mathrm{in}\:\mathrm{interior}\:\mathrm{of}\:\mathrm{a}\:\mathrm{convex} \\ $$$$\mathrm{quadrilateral}\:\mathrm{such}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{its} \\ $$$$\mathrm{distances}\:\mathrm{to}\:\mathrm{the}\:\mathrm{4}\:\mathrm{sides}\:\mathrm{is}\:\mathrm{minimal}. \\ $$

Answered by ajfour last updated on 05/Jul/17

let x_A be the distance of the point (P)  from vertex A and so on ..   let L=x_A +x_C +x_B +x_D        x_A +x_C  ≥ AC       x_B +x_D  ≥ BD  so L_(minimum) = AC+BD  so point P is the intersection of  the diagonals of the quadrilateral.    when sum of the distances of a point  from the four sides is minimum  the point is probably at the  corner of the quadrilateral having  the greatest angle (cannot prove yet).

$$\mathrm{let}\:\mathrm{x}_{\mathrm{A}} \mathrm{be}\:\mathrm{the}\:\mathrm{distance}\:\mathrm{of}\:\mathrm{the}\:\mathrm{point}\:\left(\mathrm{P}\right) \\ $$$$\mathrm{from}\:\mathrm{vertex}\:\mathrm{A}\:\mathrm{and}\:\mathrm{so}\:\mathrm{on}\:.. \\ $$$$\:\mathrm{let}\:\mathrm{L}=\mathrm{x}_{\mathrm{A}} +\mathrm{x}_{\mathrm{C}} +\mathrm{x}_{\mathrm{B}} +\mathrm{x}_{\mathrm{D}} \\ $$$$\:\:\:\:\:\mathrm{x}_{\mathrm{A}} +\mathrm{x}_{\mathrm{C}} \:\geqslant\:\mathrm{AC} \\ $$$$\:\:\:\:\:\mathrm{x}_{\mathrm{B}} +\mathrm{x}_{\mathrm{D}} \:\geqslant\:\mathrm{BD} \\ $$$$\mathrm{so}\:\mathrm{L}_{\mathrm{minimum}} =\:\mathrm{AC}+\mathrm{BD} \\ $$$$\mathrm{so}\:\mathrm{point}\:\mathrm{P}\:\mathrm{is}\:\mathrm{the}\:\mathrm{intersection}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{diagonals}\:\mathrm{of}\:\mathrm{the}\:\mathrm{quadrilateral}. \\ $$$$ \\ $$$$\mathrm{when}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{distances}\:\mathrm{of}\:\mathrm{a}\:\mathrm{point} \\ $$$$\mathrm{from}\:\mathrm{the}\:\mathrm{four}\:\mathrm{sides}\:\mathrm{is}\:\mathrm{minimum} \\ $$$$\mathrm{the}\:\mathrm{point}\:\mathrm{is}\:\mathrm{probably}\:\mathrm{at}\:\mathrm{the} \\ $$$$\mathrm{corner}\:\mathrm{of}\:\mathrm{the}\:\mathrm{quadrilateral}\:\mathrm{having} \\ $$$$\mathrm{the}\:\mathrm{greatest}\:\mathrm{angle}\:\left(\mathrm{cannot}\:\mathrm{prove}\:\mathrm{yet}\right). \\ $$

Commented by mrW1 last updated on 05/Jul/17

answer to part 1 is correct.  answer to part 2 is to check. please  consider different cases.

$$\mathrm{answer}\:\mathrm{to}\:\mathrm{part}\:\mathrm{1}\:\mathrm{is}\:\mathrm{correct}. \\ $$$$\mathrm{answer}\:\mathrm{to}\:\mathrm{part}\:\mathrm{2}\:\mathrm{is}\:\mathrm{to}\:\mathrm{check}.\:\mathrm{please} \\ $$$$\mathrm{consider}\:\mathrm{different}\:\mathrm{cases}.\: \\ $$

Answered by mrW1 last updated on 05/Jul/17

To part 1:  The answer is as given by ajfour the  intersection point of the diagonals.    To part 2:  case 1:  both pairs of opposite sides are not  parallel, see diagram.  Point A is the point whose sum of  distances to the sides is minimal.

$$\mathrm{To}\:\mathrm{part}\:\mathrm{1}: \\ $$$$\mathrm{The}\:\mathrm{answer}\:\mathrm{is}\:\mathrm{as}\:\mathrm{given}\:\mathrm{by}\:\mathrm{ajfour}\:\mathrm{the} \\ $$$$\mathrm{intersection}\:\mathrm{point}\:\mathrm{of}\:\mathrm{the}\:\mathrm{diagonals}. \\ $$$$ \\ $$$$\mathrm{To}\:\mathrm{part}\:\mathrm{2}: \\ $$$$\mathrm{case}\:\mathrm{1}: \\ $$$$\mathrm{both}\:\mathrm{pairs}\:\mathrm{of}\:\mathrm{opposite}\:\mathrm{sides}\:\mathrm{are}\:\mathrm{not} \\ $$$$\mathrm{parallel},\:\mathrm{see}\:\mathrm{diagram}. \\ $$$$\mathrm{Point}\:\mathrm{A}\:\mathrm{is}\:\mathrm{the}\:\mathrm{point}\:\mathrm{whose}\:\mathrm{sum}\:\mathrm{of} \\ $$$$\mathrm{distances}\:\mathrm{to}\:\mathrm{the}\:\mathrm{sides}\:\mathrm{is}\:\mathrm{minimal}. \\ $$

Commented by mrW1 last updated on 05/Jul/17

Commented by mrW1 last updated on 05/Jul/17

case 2:  one pair of opposite sides is parallel.  The point which is closest to K is the  solution, here it is point A.

$$\mathrm{case}\:\mathrm{2}: \\ $$$$\mathrm{one}\:\mathrm{pair}\:\mathrm{of}\:\mathrm{opposite}\:\mathrm{sides}\:\mathrm{is}\:\mathrm{parallel}. \\ $$$$\mathrm{The}\:\mathrm{point}\:\mathrm{which}\:\mathrm{is}\:\mathrm{closest}\:\mathrm{to}\:\mathrm{K}\:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{solution},\:\mathrm{here}\:\mathrm{it}\:\mathrm{is}\:\mathrm{point}\:\mathrm{A}. \\ $$

Commented by mrW1 last updated on 05/Jul/17

Commented by mrW1 last updated on 05/Jul/17

case 3:  both pairs of opposite sides are parallel.  The sum of distances from every point  to the sides is constant.

$$\mathrm{case}\:\mathrm{3}: \\ $$$$\mathrm{both}\:\mathrm{pairs}\:\mathrm{of}\:\mathrm{opposite}\:\mathrm{sides}\:\mathrm{are}\:\mathrm{parallel}. \\ $$$$\mathrm{The}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{distances}\:\mathrm{from}\:\mathrm{every}\:\mathrm{point} \\ $$$$\mathrm{to}\:\mathrm{the}\:\mathrm{sides}\:\mathrm{is}\:\mathrm{constant}. \\ $$

Commented by mrW1 last updated on 05/Jul/17

Terms of Service

Privacy Policy

Contact: info@tinkutara.com