Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 173736 by Tawa11 last updated on 17/Jul/22

Show that     x^2    +   2xy   +   3y^2    =   1,    is a solution to the  differential equation     (x   +   3y)^2  (d^2 y/dx^2 )     +   2(x^2    +   2xy   +   2y^3 )   =   0

$$\mathrm{Show}\:\mathrm{that}\:\:\:\:\:\mathrm{x}^{\mathrm{2}} \:\:\:+\:\:\:\mathrm{2xy}\:\:\:+\:\:\:\mathrm{3y}^{\mathrm{2}} \:\:\:=\:\:\:\mathrm{1},\:\:\:\:\mathrm{is}\:\mathrm{a}\:\mathrm{solution}\:\mathrm{to}\:\mathrm{the} \\ $$$$\mathrm{differential}\:\mathrm{equation}\:\:\:\:\:\left(\mathrm{x}\:\:\:+\:\:\:\mathrm{3y}\right)^{\mathrm{2}} \:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }\:\:\:\:\:+\:\:\:\mathrm{2}\left(\mathrm{x}^{\mathrm{2}} \:\:\:+\:\:\:\mathrm{2xy}\:\:\:+\:\:\:\mathrm{2y}^{\mathrm{3}} \right)\:\:\:=\:\:\:\mathrm{0} \\ $$

Answered by mindispower last updated on 17/Jul/22

(d/dx)(x^2 +2xy+3y^2 )=0  ⇔(2x+2y+2x(dy/dx)+((6dy)/dx)y)=0  (d/dx)(2x+2y+2x(dy/dx)+((6dy)/dx)y)=0  ⇎2+((2dy)/dx)+2(dy/dx)+2x(d^2 y/dx^2 )+((6d^2 y)/dx^2 )y+6((dy/dx))^2 =0  (dy/dx)=((−2x−2y)/(2x+6y))  (d^2 y/dx^2 )=(1/(2x+6y))(−2+((8x+8y)/(2x+6y))−6(((2x+2y)/(2x+6y)))^2 )  (x+3y)^3 (d^2 y/dx^2 )=(1/2)(x+3y)^2 (−2+((4x+4y)/(x+3y))−6(((x+y)/(x+3y)))^2_)    =−3(x+y)^2 −(x+3y)^2 +(2x+2y)(x+3y)  −2x^2 −6y^2 −4xy  ⇒(x+3y)^2 (d^2 y/dx^2 )+2(x^2 +2xy+3y^2 )=0  May bee i have mistak sorry sir

$$\frac{{d}}{{dx}}\left({x}^{\mathrm{2}} +\mathrm{2}{xy}+\mathrm{3}{y}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\Leftrightarrow\left(\mathrm{2}{x}+\mathrm{2}{y}+\mathrm{2}{x}\frac{{dy}}{{dx}}+\frac{\mathrm{6}{dy}}{{dx}}{y}\right)=\mathrm{0} \\ $$$$\frac{{d}}{{dx}}\left(\mathrm{2}{x}+\mathrm{2}{y}+\mathrm{2}{x}\frac{{dy}}{{dx}}+\frac{\mathrm{6}{dy}}{{dx}}{y}\right)=\mathrm{0} \\ $$$$\nLeftrightarrow\mathrm{2}+\frac{\mathrm{2}{dy}}{{dx}}+\mathrm{2}\frac{{dy}}{{dx}}+\mathrm{2}{x}\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }+\frac{\mathrm{6}{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }{y}+\mathrm{6}\left(\frac{{dy}}{{dx}}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\frac{{dy}}{{dx}}=\frac{−\mathrm{2}{x}−\mathrm{2}{y}}{\mathrm{2}{x}+\mathrm{6}{y}} \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2}{x}+\mathrm{6}{y}}\left(−\mathrm{2}+\frac{\mathrm{8}{x}+\mathrm{8}{y}}{\mathrm{2}{x}+\mathrm{6}{y}}−\mathrm{6}\left(\frac{\mathrm{2}{x}+\mathrm{2}{y}}{\mathrm{2}{x}+\mathrm{6}{y}}\right)^{\mathrm{2}} \right) \\ $$$$\left({x}+\mathrm{3}{y}\right)^{\mathrm{3}} \frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2}}\left({x}+\mathrm{3}{y}\right)^{\mathrm{2}} \left(−\mathrm{2}+\frac{\mathrm{4}{x}+\mathrm{4}{y}}{{x}+\mathrm{3}{y}}−\mathrm{6}\left(\frac{{x}+{y}}{{x}+\mathrm{3}{y}}\right)^{\mathrm{2}_{\left.\right)} } \right. \\ $$$$=−\mathrm{3}\left({x}+{y}\right)^{\mathrm{2}} −\left({x}+\mathrm{3}{y}\right)^{\mathrm{2}} +\left(\mathrm{2}{x}+\mathrm{2}{y}\right)\left({x}+\mathrm{3}{y}\right) \\ $$$$−\mathrm{2}{x}^{\mathrm{2}} −\mathrm{6}{y}^{\mathrm{2}} −\mathrm{4}{xy} \\ $$$$\Rightarrow\left({x}+\mathrm{3}{y}\right)^{\mathrm{2}} \frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }+\mathrm{2}\left({x}^{\mathrm{2}} +\mathrm{2}{xy}+\mathrm{3}{y}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$${May}\:{bee}\:{i}\:{have}\:{mistak}\:{sorry}\:{sir} \\ $$$$ \\ $$

Commented by Tawa11 last updated on 17/Jul/22

God bless you sir.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Commented by Tawa11 last updated on 17/Jul/22

In conclusion, that mean    x^2   +  2xy  +  3y^2   =   1   is not a solution.

$$\mathrm{In}\:\mathrm{conclusion},\:\mathrm{that}\:\mathrm{mean}\:\:\:\:\mathrm{x}^{\mathrm{2}} \:\:+\:\:\mathrm{2xy}\:\:+\:\:\mathrm{3y}^{\mathrm{2}} \:\:=\:\:\:\mathrm{1}\:\:\:\mathrm{is}\:\mathrm{not}\:\mathrm{a}\:\mathrm{solution}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com