Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 173815 by mr W last updated on 18/Jul/22

prove   (((n+1)/3))^n <n!

prove (n+13)n<n!

Commented bymr W last updated on 19/Jul/22

good idea sir! thanks!  n!≈(√(2πn))((n/e))^n   lim_(n→∞) ((n+1)/( ((n!))^(1/n) ))  =lim_(n→∞) (((n+1))/((2nπ)^(1/(2n)) ((n/e))))  =lim_(n→∞) (e/(((π/(1/(2n))))^(1/(2n)) ))(1+(1/n))  =lim_(n→∞) (e/(((π/(1/(2n))))^(1/(2n)) ))  =lim_(x→0) (e/(((π/x))^x ))  =(e/1)  =e < 3

goodideasir!thanks! n!2πn(ne)n limnn+1n!n =limn(n+1)(2nπ)12n(ne) =limne(π12n)12n(1+1n) =limne(π12n)12n =limx0e(πx)x =e1 =e<3

Commented byFrix last updated on 18/Jul/22

⇔  3>((n+1)/( ((n!))^(1/n) ))  lim_(n→∞)  ((n+1)/( ((n!))^(1/n) )) =e<3  just a idea...

3>n+1n!n limnn+1n!n=e<3 justaidea...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com