Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 173829 by mnjuly1970 last updated on 19/Jul/22

      If  , x∈ [0 , 1]         ,    ∣ (√(1−x^( 2) )) −ax−b ∣≤ (((√2) −1)/2)      find the values of  ( a , b )     a , b∈ R.

$$ \\ $$$$\:\:\:\:{If}\:\:,\:{x}\in\:\left[\mathrm{0}\:,\:\mathrm{1}\right]\: \\ $$$$\:\:\:\:\:\:,\:\:\:\:\mid\:\sqrt{\mathrm{1}−{x}^{\:\mathrm{2}} }\:−{ax}−{b}\:\mid\leqslant\:\frac{\sqrt{\mathrm{2}}\:−\mathrm{1}}{\mathrm{2}} \\ $$$$\:\:\:\:{find}\:{the}\:{values}\:{of}\:\:\left(\:{a}\:,\:{b}\:\right) \\ $$$$\:\:\:{a}\:,\:{b}\in\:\mathbb{R}. \\ $$$$ \\ $$

Commented by kaivan.ahmadi last updated on 19/Jul/22

we can find b, easily  let f(x)=∣(√(1−x^2 ))−ax−b∣  f(0)=∣1−b∣≤(((√2)−1)/2)  ⇒((1−(√2))/2)≤1−b≤(((√2)−1)/2)⇒  ⇒((1−(√2))/2)≤b−1≤(((√2)−1)/2)  ⇒((3−(√2))/2)≤b≤((1+(√2))/2)

$${we}\:{can}\:{find}\:{b},\:{easily} \\ $$$${let}\:{f}\left({x}\right)=\mid\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }−{ax}−{b}\mid \\ $$$${f}\left(\mathrm{0}\right)=\mid\mathrm{1}−{b}\mid\leqslant\frac{\sqrt{\mathrm{2}}−\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\frac{\mathrm{1}−\sqrt{\mathrm{2}}}{\mathrm{2}}\leqslant\mathrm{1}−{b}\leqslant\frac{\sqrt{\mathrm{2}}−\mathrm{1}}{\mathrm{2}}\Rightarrow \\ $$$$\Rightarrow\frac{\mathrm{1}−\sqrt{\mathrm{2}}}{\mathrm{2}}\leqslant{b}−\mathrm{1}\leqslant\frac{\sqrt{\mathrm{2}}−\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\frac{\mathrm{3}−\sqrt{\mathrm{2}}}{\mathrm{2}}\leqslant{b}\leqslant\frac{\mathrm{1}+\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Answered by mahdipoor last updated on 19/Jul/22

f(x)=(√(1−x^2 ))−ax−b  (df/dx)=((−x)/( (√(1−x^2 ))))−a=0 or ∄    critical point in [0,1] ⇒ 0,1, (if a<0) ((−a)/( (√(1+a^2 ))))  ∣f∣≤(((√2)−1)/2)=c ⇒ −c≤f≤c   { ((x=0 ⇒ −c≤1−b≤c)),((x=1 ⇒ −c≤a+b≤c)),((x=((−a)/( (√(1+a^2 )))) ⇒ −c≤(√(1+a^2 ))−b≤c)) :}  ⇒^((I))  { ((1−c≤b≤1+c     (I))),((1−2c≤a≤2c+1 )),((−2(√(c^2 +c))≤a≤2(√(c^2 +c)))) :}  ⇒ { ((1−c≤b≤1+c)),((−2(√(c^2 −c))≤1−2c≤a≤2(√(c^2 +c))≤2c+1)) :}  a<0  &  { ((((3−(√2))/2)≤b≤(((√2)+1)/2))),((2−(√2)≤a≤(√2))) :} ⇒ ∄  if a≥0 :  critical point in [0,1] ⇒ 0,1   { ((x=0 ⇒ −c≤1−b≤c ⇒1−c≤b≤1+c)),((x=1 ⇒ −c≤a+b≤c ⇒1−2c≤a≤2c+1 )) :}  ⇒ a≥0 &  { ((((3−(√2))/2)≤b≤(((√2)+1)/2))),((2−(√2)≤a≤(√2))) :}  ⇒⇒ { ((((3−(√2))/2)≤b≤(((√2)+1)/2))),((2−(√2)≤a≤(√2))) :}

$${f}\left({x}\right)=\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }−{ax}−{b} \\ $$$$\frac{{df}}{{dx}}=\frac{−{x}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}−{a}=\mathrm{0}\:{or}\:\nexists\:\: \\ $$$${critical}\:{point}\:{in}\:\left[\mathrm{0},\mathrm{1}\right]\:\Rightarrow\:\mathrm{0},\mathrm{1},\:\left({if}\:{a}<\mathrm{0}\right)\:\frac{−{a}}{\:\sqrt{\mathrm{1}+{a}^{\mathrm{2}} }} \\ $$$$\mid{f}\mid\leqslant\frac{\sqrt{\mathrm{2}}−\mathrm{1}}{\mathrm{2}}={c}\:\Rightarrow\:−{c}\leqslant{f}\leqslant{c} \\ $$$$\begin{cases}{{x}=\mathrm{0}\:\Rightarrow\:−{c}\leqslant\mathrm{1}−{b}\leqslant{c}}\\{{x}=\mathrm{1}\:\Rightarrow\:−{c}\leqslant{a}+{b}\leqslant{c}}\\{{x}=\frac{−{a}}{\:\sqrt{\mathrm{1}+{a}^{\mathrm{2}} }}\:\Rightarrow\:−{c}\leqslant\sqrt{\mathrm{1}+{a}^{\mathrm{2}} }−{b}\leqslant{c}}\end{cases} \\ $$$$\overset{\left(\mathrm{I}\right)} {\Rightarrow}\begin{cases}{\mathrm{1}−{c}\leqslant{b}\leqslant\mathrm{1}+{c}\:\:\:\:\:\left(\mathrm{I}\right)}\\{\mathrm{1}−\mathrm{2}{c}\leqslant{a}\leqslant\mathrm{2}{c}+\mathrm{1}\:}\\{−\mathrm{2}\sqrt{{c}^{\mathrm{2}} +{c}}\leqslant{a}\leqslant\mathrm{2}\sqrt{{c}^{\mathrm{2}} +{c}}}\end{cases} \\ $$$$\Rightarrow\begin{cases}{\mathrm{1}−{c}\leqslant{b}\leqslant\mathrm{1}+{c}}\\{−\mathrm{2}\sqrt{{c}^{\mathrm{2}} −{c}}\leqslant\mathrm{1}−\mathrm{2}{c}\leqslant{a}\leqslant\mathrm{2}\sqrt{{c}^{\mathrm{2}} +{c}}\leqslant\mathrm{2}{c}+\mathrm{1}}\end{cases} \\ $$$${a}<\mathrm{0}\:\:\&\:\begin{cases}{\frac{\mathrm{3}−\sqrt{\mathrm{2}}}{\mathrm{2}}\leqslant{b}\leqslant\frac{\sqrt{\mathrm{2}}+\mathrm{1}}{\mathrm{2}}}\\{\mathrm{2}−\sqrt{\mathrm{2}}\leqslant{a}\leqslant\sqrt{\mathrm{2}}}\end{cases}\:\Rightarrow\:\nexists \\ $$$${if}\:{a}\geqslant\mathrm{0}\:: \\ $$$${critical}\:{point}\:{in}\:\left[\mathrm{0},\mathrm{1}\right]\:\Rightarrow\:\mathrm{0},\mathrm{1} \\ $$$$\begin{cases}{{x}=\mathrm{0}\:\Rightarrow\:−{c}\leqslant\mathrm{1}−{b}\leqslant{c}\:\Rightarrow\mathrm{1}−{c}\leqslant{b}\leqslant\mathrm{1}+{c}}\\{{x}=\mathrm{1}\:\Rightarrow\:−{c}\leqslant{a}+{b}\leqslant{c}\:\Rightarrow\mathrm{1}−\mathrm{2}{c}\leqslant{a}\leqslant\mathrm{2}{c}+\mathrm{1}\:}\end{cases} \\ $$$$\Rightarrow\:{a}\geqslant\mathrm{0}\:\&\:\begin{cases}{\frac{\mathrm{3}−\sqrt{\mathrm{2}}}{\mathrm{2}}\leqslant{b}\leqslant\frac{\sqrt{\mathrm{2}}+\mathrm{1}}{\mathrm{2}}}\\{\mathrm{2}−\sqrt{\mathrm{2}}\leqslant{a}\leqslant\sqrt{\mathrm{2}}}\end{cases} \\ $$$$\Rightarrow\Rightarrow\begin{cases}{\frac{\mathrm{3}−\sqrt{\mathrm{2}}}{\mathrm{2}}\leqslant{b}\leqslant\frac{\sqrt{\mathrm{2}}+\mathrm{1}}{\mathrm{2}}}\\{\mathrm{2}−\sqrt{\mathrm{2}}\leqslant{a}\leqslant\sqrt{\mathrm{2}}}\end{cases} \\ $$

Commented by mnjuly1970 last updated on 20/Jul/22

zendeh bashid ostad   sepas...

$${zendeh}\:{bashid}\:{ostad} \\ $$$$\:{sepas}... \\ $$

Commented by mahdipoor last updated on 20/Jul/22

sharmande mikonid mano ,   man ostad nistam ... :)

$${sharmande}\:{mikonid}\:{mano}\:, \\ $$$$\left.\:{man}\:{ostad}\:{nistam}\:...\::\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com