Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 173834 by mnjuly1970 last updated on 19/Jul/22

Commented by infinityaction last updated on 20/Jul/22

f(x)g(x)h(x) = (tan^7 x+cot^7 x)(tan^8 x−cot^8 x)                                 ×  (tan^9 x+cot^9 x)   F(x) = (tan^(15) x−cotx+tanx−cot^(15) x)(tan^9 +cot^9 x)        F(x)= tan^(24) x−tan^8 x+tan^(10) x−cot^6 x              + tan^6 x−cot^(10) x+cot^8 x−cot^(24) x  F ′(x) = 24tan^(23) xsec^2 x−8tan^7 xsec^2 x        + 10tan^9 xsec^2 x+6cot^5 xcosec^2 x         + 6tan^5 xsec^2 x+10cot^9 xcosec^2 x−     8cot^7 xcosec^2 x +24cot^(23) xcosec^2 x  F ′(x) = 48−16+20+12+12+20−16+48               F^  ′(x) =    128

f(x)g(x)h(x)=(tan7x+cot7x)(tan8xcot8x)×(tan9x+cot9x)F(x)=(tan15xcotx+tanxcot15x)(tan9+cot9x)F(x)=tan24xtan8x+tan10xcot6x+tan6xcot10x+cot8xcot24xF(x)=24tan23xsec2x8tan7xsec2x+10tan9xsec2x+6cot5xcosec2x+6tan5xsec2x+10cot9xcosec2x8cot7xcosec2x+24cot23xcosec2xF(x)=4816+20+12+12+2016+48Prime causes double exponent: use braces to clarify

Commented by Tawa11 last updated on 19/Jul/22

Great sirs

Greatsirs

Answered by mahdipoor last updated on 19/Jul/22

P (x)=P_(a,±) (x)=tan^a (x)±cot^a (x)  (dP/dx)=a(tan^(a−1) (x).(1/(cos^2 x))∓cot^(a−1) (x).(1/(sin^2 x)))  ⇒ { ((P(θ)=1±1)),((P^( ′) (θ)=2a(1∓1))) :}      get  θ=π/4  f ≡ P_(7,+)  ⇒f(θ)=2     D_x f(θ)=0  g ≡ P_(8,−)  ⇒g(θ)=0     D_x g(θ)=32  h ≡ P_(7,+)  ⇒h(θ)=2     D_x h(θ)=0  (dF/dx)(θ)=(d/dx)(fgh)(θ)=(f^( ′) gh+fg^( ′) h+fgh^( ′) )(θ)=  0+2×32×2+0=128

P(x)=Pa,±(x)=tana(x)±cota(x)dPdx=a(tana1(x).1cos2xcota1(x).1sin2x){P(θ)=1±1P(θ)=2a(11)getθ=π/4fP7,+f(θ)=2Dxf(θ)=0gP8,g(θ)=0Dxg(θ)=32hP7,+h(θ)=2Dxh(θ)=0dFdx(θ)=ddx(fgh)(θ)=(fgh+fgh+fgh)(θ)=0+2×32×2+0=128

Commented by mnjuly1970 last updated on 19/Jul/22

    very nice  mamnon ostad

verynicemamnonostad

Commented by mahdipoor last updated on 20/Jul/22

lotf darid ostad :)

lotfdaridostad:)

Answered by mr W last updated on 20/Jul/22

F(x)=f(x)g(x)h(x)  ln F(x)=ln f(x)+ln g(x)+ln h(x)  ((F′(x))/(F(x)))=((f′(x))/(f(x)))+((g′(x))/(g(x)))+((h′(x))/(h(x)))  F′(x)=g(x)h(x)f′(x)+f(x)h(x)g′(x)+f(x)g(x)h′(x)  f((π/4))=h((π/4))=2  g((π/4))=0  F′((π/4))=f((π/4))h((π/4))g′((π/4))=4×g′((π/4))  =4×[((8 tan^7  x)/(cos^2  x))+((8 cot^7  x)/(sin^2  x))]_(x=(π/4))   =32×[(1/(1/2))+(1/(1/2))]  =32×4=128

F(x)=f(x)g(x)h(x)lnF(x)=lnf(x)+lng(x)+lnh(x)F(x)F(x)=f(x)f(x)+g(x)g(x)+h(x)h(x)F(x)=g(x)h(x)f(x)+f(x)h(x)g(x)+f(x)g(x)h(x)f(π4)=h(π4)=2g(π4)=0F(π4)=f(π4)h(π4)g(π4)=4×g(π4)=4×[8tan7xcos2x+8cot7xsin2x]x=π4=32×[112+112]=32×4=128

Commented by mnjuly1970 last updated on 20/Jul/22

   really nice solution master

reallynicesolutionmaster

Terms of Service

Privacy Policy

Contact: info@tinkutara.com