All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 173874 by akolade last updated on 20/Jul/22
Answered by a.lgnaoui last updated on 21/Jul/22
I=∫π/415π/4(sinxcos2x+3sin2xcos2x+4sin5xcos2x+2sin3x)dx=cos2xsin2x(3+4sin3x)+(sinxcos2x+2sin3x)=14(sin2x)2(3+4sin3x)+sinx(1+sin2x)=34sin2(2x)+2sin3x+sinxI=34∫sin2(2x)dx+3∫sin3xdx+∫sinxdx∫sin2(2x)dxu′=1⇒u=xv=sin2(2x)⇒v′=2sin(2x)cos(2x)=sin4x∫sin2(2x)dx=[xsin2(2x)]−(∫xsin4xdx=[−14xcos4x]+sin4x)⇒∫sin22xdx=xsin22x+14(xcos4x)−sin4x∫(sin3x+sinx)dx=∫sinx(1+sin2x)=−cosx(1+sin2x)−cos2x2I=34[xsin22x]π415π4+316[xcos4x]π415π4−34[sin4x]π415π4−[cosx(1+sin2x)]π415π4+[cos2x2]π415π4=34[(15π4sin2(−π4)−π4sin2π4)]+[316(15π4cos(−π)−π4cosπ)]−34(sin15π−sinπ)−[cos(π4)(1+sin2π4)−(cosπ4(1+sin2π4)]+(12cos3π2−12cosπ2)I=−49π32
Terms of Service
Privacy Policy
Contact: info@tinkutara.com