Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 173874 by akolade last updated on 20/Jul/22

Answered by a.lgnaoui last updated on 21/Jul/22

I=∫_(π/4) ^(15π/4) (sin xcos^2 x+3sin^2 xcos^2 x+4sin^5 xcos^2 x+2sin^3 x)dx=  cos^2 xsin^2 x (3+4sin^3 x)+(sinxcos^2 x+  2sin^3 x)=  (1/4)(sin2x)^2 (3+4sin^3 x)+sinx (1 +sin^2 x )=  (3/4)sin^2 (2x)+2sin^3 x+ sinx       I=(3/4)∫sin^2 (2x)dx+3∫sin^3 xdx+∫sin xdx  ∫sin^2 (2x)dx     u′=1⇒u=x     v=sin^2 (2x)⇒v′=2sin( 2x)cos(2x)=sin4x  ∫sin^2 (2x)dx=[xsin^2 (2x)]−(∫xsin4xdx  =[−(1/4)xcos4x]+ sin4x)    ⇒∫sin^2 2xdx=xsin^2 2x+(1/4)(xcos4x)−sin 4x   ∫(sin^3 x+sinx) dx= ∫sin x(1+sin^2 x)=−cos x(1+sin^2 x)−((cos 2x)/2)  I=(3/4)[xsin^2 2x]_(π/4) ^((15π)/4) +(3/(16))[xcos 4x]_(π/4) ^((15π)/4)  −(3/4)[ sin4x]_(π/4) ^((15π)/4)      −   [cos x(1+sin^2 x)]_(π/4) ^((15π)/4) +[((cos 2x)/2)]_(π/4) ^((15π)/4)   =(3/4)[ (((15π)/4)sin^2 (−(π/4)) −(π/4)sin^2 (π/4))]+[(3/(16)) (((15π)/4)cos( −π)−(π/4)cos π)]−(3/4)(sin 15π−sin π)      −[cos ((π/4))(1+sin^2 (π/4)) − (cos (π/4)(1+sin^2 (π/4) )]+((1/2)cos ((3π)/2)−(1/2)cos (π/2))     I   =((−49π)/(32))

I=π/415π/4(sinxcos2x+3sin2xcos2x+4sin5xcos2x+2sin3x)dx=cos2xsin2x(3+4sin3x)+(sinxcos2x+2sin3x)=14(sin2x)2(3+4sin3x)+sinx(1+sin2x)=34sin2(2x)+2sin3x+sinxI=34sin2(2x)dx+3sin3xdx+sinxdxsin2(2x)dxu=1u=xv=sin2(2x)v=2sin(2x)cos(2x)=sin4xsin2(2x)dx=[xsin2(2x)](xsin4xdx=[14xcos4x]+sin4x)sin22xdx=xsin22x+14(xcos4x)sin4x(sin3x+sinx)dx=sinx(1+sin2x)=cosx(1+sin2x)cos2x2I=34[xsin22x]π415π4+316[xcos4x]π415π434[sin4x]π415π4[cosx(1+sin2x)]π415π4+[cos2x2]π415π4=34[(15π4sin2(π4)π4sin2π4)]+[316(15π4cos(π)π4cosπ)]34(sin15πsinπ)[cos(π4)(1+sin2π4)(cosπ4(1+sin2π4)]+(12cos3π212cosπ2)I=49π32

Terms of Service

Privacy Policy

Contact: info@tinkutara.com