Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 173894 by azadsir last updated on 20/Jul/22

If  secA − tanA = Q than prove that,          cosecA = ((1 + Q^2 )/(1 − Q^2 ))

IfsecAtanA=Qthanprovethat,cosecA=1+Q21Q2

Commented by cortano1 last updated on 20/Jul/22

Q=((1−sin A)/(cos A)) ⇒Q^2 cos^2 A=1+sin^2 A−2sin A  ⇒sin^2 A−Q^2 (1−sin^2 A)−2sin A+1=0  ⇒(1+Q^2 )sin^2 A−2sin A+1−Q^2 =0  ⇒sin A=((2 ± (√(4−4(1+Q^2 )(1−Q^2 ))))/(2(1+Q^2 )))  ⇒sin A=((2±(√(4−4(1−Q^4 ))))/(2(1+Q^2 )))  ⇒csc A= ((2(1+Q^2 ))/(2±2Q^2 )) = ((1+Q^2 )/(1±Q^2 ))   ⇒sin A≠1 ⇒csc A= ((1+Q^2 )/(1−Q^2 ))

Q=1sinAcosAQ2cos2A=1+sin2A2sinAsin2AQ2(1sin2A)2sinA+1=0(1+Q2)sin2A2sinA+1Q2=0sinA=2±44(1+Q2)(1Q2)2(1+Q2)sinA=2±44(1Q4)2(1+Q2)cscA=2(1+Q2)2±2Q2=1+Q21±Q2sinA1cscA=1+Q21Q2

Commented by azadsir last updated on 20/Jul/22

Thank you

Thankyou

Answered by blackmamba last updated on 20/Jul/22

  Q = ((1−sin A)/(cos A)) =((cos (1/2)A−sin (1/2)A)/(cos (1/2)A+sin (1/2)A))   Q=((1−tan (1/2)A)/(1+tan (1/2)A))   Q+Q tan (1/2)A= 1−tan (1/2)A   tan (1/2)A=((1−Q)/(1+Q))    { ((sin (1/2)A=((1−Q)/( (√(2+2Q^2 )))))),((cos (1/2)= ((1+Q)/( (√(2+2Q^2 )))))) :}   sin A = ((2(1−Q^2 ))/(2(1+Q^2 )))   (1/(sin A)) = ((1+Q^2 )/(1−Q^2 ))

Q=1sinAcosA=cos12Asin12Acos12A+sin12AQ=1tan12A1+tan12AQ+Qtan12A=1tan12Atan12A=1Q1+Q{sin12A=1Q2+2Q2cos12=1+Q2+2Q2sinA=2(1Q2)2(1+Q2)1sinA=1+Q21Q2

Commented by azadsir last updated on 20/Jul/22

Thank you

Thankyou

Commented by Tawa11 last updated on 21/Jul/22

Great sirs

Greatsirs

Answered by BaliramKumar last updated on 21/Jul/22

secA−tanA=Q  ((1−sinA)/(cosA)) = Q  (((1−sinA)^2 )/(cos^2 A)) = Q^2   (((1−sinA)^2 )/(1−sin^2 A)) = Q^2   (((1−sinA)^2 )/((1−sinA)(1+sinA))) = Q^2   (((1−sinA))/((1+sinA))) = Q^2   (((1+sinA))/((1−sinA))) = (1/Q^2 )  (((1+sinA)+(1−sinA))/((1+sinA)−(1−sinA))) = ((1+Q^2 )/(1−Q^2 ))        [∵ If   (a/b) = (c/d) then  ((a+b)/(a−b)) = ((c+d)/(c−d))  ]  (2/(2sinA)) = ((1+Q^2 )/(1−Q^2 ))  (1/(sinA)) = ((1+Q^2 )/(1−Q^2 ))  cosecA = ((1+Q^2 )/(1−Q^2 ))

secAtanA=Q1sinAcosA=Q(1sinA)2cos2A=Q2(1sinA)21sin2A=Q2(1sinA)2(1sinA)(1+sinA)=Q2(1sinA)(1+sinA)=Q2(1+sinA)(1sinA)=1Q2(1+sinA)+(1sinA)(1+sinA)(1sinA)=1+Q21Q2[Ifab=cdthena+bab=c+dcd]22sinA=1+Q21Q21sinA=1+Q21Q2cosecA=1+Q21Q2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com