Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 173909 by mnjuly1970 last updated on 20/Jul/22

      Ω=∫_0 ^( 1) (( ln^( 2) (1−x))/((1+x )^( 2) )) = Li_2  ((1/2) )      −−−   Solution −−−      Ω =^(i.b.p) {[−(1/(1+x))ln^( 2) (1−x)]_0 ^1 −2∫_0 ^( 1) ((ln(1−x))/((1−x)(1+x)))dx       =lim_( x→1^− ) −(1/(1+x)) ln^( 2) (1−x)−∫_0 ^( 1) ((ln(1−x))/(1−x)) +((ln(1−x))/(1+x))dx       = lim_( x→1^− ) (1/2) ln^( 2) (1−x)−(1/(1+x))ln^( 2) (1−x)−Φ      =lim_( x→1^( −) )  (((x−1)/(2(1+x))))ln^( 2) (1−x)−Φ       = −Φ =_(derived) ^(earlier)  −(−(π^( 2) /(12)) +(1/2)ln^( 2) (2))  ⇒  Ω = (π^( 2) /(12)) −(1/2) ln^( 2) (2 )=Li_2 ((1/2))

$$ \\ $$$$\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{ln}^{\:\mathrm{2}} \left(\mathrm{1}−{x}\right)}{\left(\mathrm{1}+{x}\:\right)^{\:\mathrm{2}} }\:=\:{Li}_{\mathrm{2}} \:\left(\frac{\mathrm{1}}{\mathrm{2}}\:\right) \\ $$$$\:\:\:\:−−−\:\:\:{Solution}\:−−− \\ $$$$\:\:\:\:\Omega\:\overset{{i}.{b}.{p}} {=}\left\{\left[−\frac{\mathrm{1}}{\mathrm{1}+{x}}{ln}^{\:\mathrm{2}} \left(\mathrm{1}−{x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} −\mathrm{2}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}−{x}\right)}{\left(\mathrm{1}−{x}\right)\left(\mathrm{1}+{x}\right)}{dx}\right. \\ $$$$\:\:\:\:\:={lim}_{\:{x}\rightarrow\mathrm{1}^{−} } −\frac{\mathrm{1}}{\mathrm{1}+{x}}\:{ln}^{\:\mathrm{2}} \left(\mathrm{1}−{x}\right)−\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}−{x}\right)}{\mathrm{1}−{x}}\:+\frac{{ln}\left(\mathrm{1}−{x}\right)}{\mathrm{1}+{x}}{dx} \\ $$$$\:\:\:\:\:=\:{lim}_{\:{x}\rightarrow\mathrm{1}^{−} } \frac{\mathrm{1}}{\mathrm{2}}\:{ln}^{\:\mathrm{2}} \left(\mathrm{1}−{x}\right)−\frac{\mathrm{1}}{\mathrm{1}+{x}}{ln}^{\:\mathrm{2}} \left(\mathrm{1}−{x}\right)−\Phi \\ $$$$\:\:\:\:={lim}_{\:{x}\rightarrow\mathrm{1}^{\:−} } \:\left(\frac{{x}−\mathrm{1}}{\mathrm{2}\left(\mathrm{1}+{x}\right)}\right){ln}^{\:\mathrm{2}} \left(\mathrm{1}−{x}\right)−\Phi \\ $$$$\:\:\:\:\:=\:−\Phi\:\underset{{derived}} {\overset{{earlier}} {=}}\:−\left(−\frac{\pi^{\:\mathrm{2}} }{\mathrm{12}}\:+\frac{\mathrm{1}}{\mathrm{2}}{ln}^{\:\mathrm{2}} \left(\mathrm{2}\right)\right) \\ $$$$\Rightarrow\:\:\Omega\:=\:\frac{\pi^{\:\mathrm{2}} }{\mathrm{12}}\:−\frac{\mathrm{1}}{\mathrm{2}}\:{ln}^{\:\mathrm{2}} \left(\mathrm{2}\:\right)={Li}_{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 21/Jul/22

mercey sir

$${mercey}\:{sir} \\ $$

Commented by Tawa11 last updated on 21/Jul/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com