Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 174029 by mathlove last updated on 23/Jul/22

x+y=1  x^5 +xy+y^5 =x^2 y^(2      )   faind the volue of   x^(2022) +xy+y^(2022) =?

x+y=1x5+xy+y5=x2y2faindthevolueofx2022+xy+y2022=?

Commented by MJS_new last updated on 23/Jul/22

y=1−x  4x^4 −8x^3 +8x^2 −4x+1=0  (2x^2 −2x+1)^2 =0  x=(1/2)±(1/2)i ∧ y=conj (x) ⇒ x^n +y^n =0∧xy=(1/2)  answer is (1/2)

y=1x4x48x3+8x24x+1=0(2x22x+1)2=0x=12±12iy=conj(x)xn+yn=0xy=12answeris12

Answered by mr W last updated on 23/Jul/22

x^2 +y^2 +2xy=1  x^2 +y^2 =1−2xy    (x^2 +y^2 )(x+y)=1−2xy  x^3 +y^3 +xy(x+y)=1−2xy  x^3 +y^3 =1−3xy    x^4 +y^4 +2(xy)^2 =1−4xy+4(xy)^2   x^4 +y^4 =1−4xy+2(xy)^2     (x^4 +y^4 )(x+y)=1−4xy+2(xy)^2   x^5 +y^5 +xy(x^3 +y^3 )=1−4xy+2(xy)^2   x^5 +y^5 +xy(1−3xy)=1−4xy+2(xy)^2   x^5 +y^5 =1−5xy+5(xy)^2     (xy)^2 −xy=1−5xy+5(xy)^2   0=1−4xy+4(xy)^2   (2xy−1)^2 =0  ⇒xy=(1/2)  x,y are roots of  z^2 −z+(1/2)=0  z=(1/2)(1±i)=(1/( (√2)))((1/( (√2)))±(i/( (√2))))     =(1/( (√2)))[cos (±(π/4))+i sin (±(π/4))]    z_1 ^(2022) =(1/2^(1011) )[cos (((2022π)/4))+i sin (((2022π)/4))]  z_1 ^(2022) =(1/2^(1011) )[cos (505π+(π/2))+i sin (505π+(π/2))]  z_1 ^(2022) =−(i/2^(1011) )  z_2 ^(2022) =(1/2^(1011) )[cos (−((2022π)/4))+i sin (−((2022π)/4))]  z_2 ^(2022) =(1/2^(1011) )[cos (−505π−(π/2))+i sin (−505π−(π/2))]  z_2 ^(2022) =(i/2^(1011) )  ⇒x^(2022) +y^(2022) =z_1 ^(2022) +z_2 ^(2022) =0  ⇒x^(2022) +xy+y^(2022) =(1/2) ✓

x2+y2+2xy=1x2+y2=12xy(x2+y2)(x+y)=12xyx3+y3+xy(x+y)=12xyx3+y3=13xyx4+y4+2(xy)2=14xy+4(xy)2x4+y4=14xy+2(xy)2(x4+y4)(x+y)=14xy+2(xy)2x5+y5+xy(x3+y3)=14xy+2(xy)2x5+y5+xy(13xy)=14xy+2(xy)2x5+y5=15xy+5(xy)2(xy)2xy=15xy+5(xy)20=14xy+4(xy)2(2xy1)2=0xy=12x,yarerootsofz2z+12=0z=12(1±i)=12(12±i2)=12[cos(±π4)+isin(±π4)]z12022=121011[cos(2022π4)+isin(2022π4)]z12022=121011[cos(505π+π2)+isin(505π+π2)]z12022=i21011z22022=121011[cos(2022π4)+isin(2022π4)]z22022=121011[cos(505ππ2)+isin(505ππ2)]z22022=i21011x2022+y2022=z12022+z22022=0x2022+xy+y2022=12

Commented by behi834171 last updated on 23/Jul/22

great sir mrW.

greatsirmrW.

Commented by Tawa11 last updated on 23/Jul/22

Great sir

Greatsir

Commented by mathlove last updated on 23/Jul/22

thanks mr W

thanksmrW

Terms of Service

Privacy Policy

Contact: info@tinkutara.com