Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 174059 by mr W last updated on 23/Jul/22

if x^3 +y^3 +3xy=1, then x+y=?

ifx3+y3+3xy=1,thenx+y=?

Commented by infinityaction last updated on 23/Jul/22

y =0 and x = 1  then x+y = 1  or    x =−1 and y=−1  then x+y =−2

y=0andx=1thenx+y=1orx=1andy=1thenx+y=2

Commented by Tawa11 last updated on 24/Jul/22

Great sirs

Greatsirs

Commented by dragan91 last updated on 24/Jul/22

(x+y)(x^2 −xy+y^2 )=1−3xy  (x+y)((x+y)^2 −3xy)=1−3xy  (x+y)^3 −1−3xy(x+y)+3xy=0  (x+y−1)((x+y)^2 +x+y+1)−3xy(x+y−1)=0  (x+y−1)(x^2 +2xy+y^2 +x+y+1−3xy)=0  1) x+y=1  2)x^2 −xy+y^2 +x+y+1=0  x^2 +x(1−y)+y^2 +y+1=0  x_(1,2) =((y−1±(√(1−2y+y^2 −4y^2 −4y−4)))/2)  =((y−1)/2)±((√(−3(y^2 +2y+1)))/2)  =((y−1)/2)±(((y+1)i(√3))/2)  ⇒x+y=((3y−1)/2)±(((y+1)i(√3))/2) ,y∈R

(x+y)(x2xy+y2)=13xy(x+y)((x+y)23xy)=13xy(x+y)313xy(x+y)+3xy=0(x+y1)((x+y)2+x+y+1)3xy(x+y1)=0(x+y1)(x2+2xy+y2+x+y+13xy)=01)x+y=12)x2xy+y2+x+y+1=0x2+x(1y)+y2+y+1=0x1,2=y1±12y+y24y24y42=y12±3(y2+2y+1)2=y12±(y+1)i32x+y=3y12±(y+1)i32,yR

Answered by behi834171 last updated on 24/Jul/22

x+y=p,xy=q  (x+y)[(x+y)^2 −3xy]+3xy=1  ⇒p(p^2 −3q)+3q=1⇒p^3 −3pq+3q−1=0  (p−1)(p^2 +p−3q+1)=0  ⇒p=1,p=((−1±(√(12q−3)))/2)  ⇒x+y=p=1  .■   [only possibility,i think]  [12q−3=0⇒q=(1/4),p=−(1/2)  ⇒z^2 +(z/2)+(1/4)=0⇒4z^2 +2z+1=0  z=((−2±(√(4−16)))/8)=((−2±2(√3)i)/8)=−((1/4)∓i.((√3)/4))  ⇒ { ((x=−((1/4)+i.((√3)/4)))),((y=−((1/4)+i.((√3)/4)))) :}    ⇒x+y=^? −(1/2)  x^3 +y^3 =(x+y)[(x+y)^2 −3xy]=  =(−(1/2))[(1/4)−(3/4)]=(1/4)  ⇒x^3 +y^3 +3xy=(1/4)+3×(1/4)=1  ok  ⇒x+y=−(1/2)  [another possibility]]

x+y=p,xy=q(x+y)[(x+y)23xy]+3xy=1p(p23q)+3q=1p33pq+3q1=0(p1)(p2+p3q+1)=0p=1,p=1±12q32x+y=p=1.[onlypossibility,ithink][12q3=0q=14,p=12z2+z2+14=04z2+2z+1=0z=2±4168=2±23i8=(14i.34){x=(14+i.34)y=(14+i.34)x+y=?12x3+y3=(x+y)[(x+y)23xy]==(12)[1434]=14x3+y3+3xy=14+3×14=1okx+y=12[anotherpossibility]]

Answered by MJS_new last updated on 24/Jul/22

x^3 +y^3 +3xy−1=0  (x+y−1)(x^2 −xy+y^2 +x+y+1)=0  (1) x+y=1  (2) y=((x−1)/2)±(((√3)(x+1))/2)i       if x, y ∈R ⇒ x=−1∧y=−1 ⇒ x+y=−2       if x, y ∈C ⇒ x+y=((3x−1)/2)±(((√3)(x+1))/2)i ∧ x∈C

x3+y3+3xy1=0(x+y1)(x2xy+y2+x+y+1)=0(1)x+y=1(2)y=x12±3(x+1)2iifx,yRx=1y=1x+y=2ifx,yCx+y=3x12±3(x+1)2ixC

Terms of Service

Privacy Policy

Contact: info@tinkutara.com