Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 174062 by Tawa11 last updated on 23/Jul/22

find all prime p and q  such that    p^2   −  p    =   37q^2   −  q

findallprimepandqsuchthatp2p=37q2q

Commented by Rasheed.Sindhi last updated on 24/Jul/22

≪_• ^•  SUCCESSFUL  Approach_• ^• _(−) ^(−) ≫   p^    −  p    =     q^    −  q  p^2 −q^2 =36q^2 +p−q  p^2 −q^2 −(p−q)=36q^2   (p−q)(p+q−1)=36q^2   (((p−q)(p+q−1))/q^2 )=36   { (((((p−q)/q))(((p+q−1)/q))=36)),(((((p−q)/q^2 ))(p+q−1)=36)),(((p−q)(((p+q−1)/q^2 ))=36)) :}    { ((^★ ((p/q)−1)((p/q)+((q−1)/q))=36 (false))),((^(★★) (((p−q)/q^2 ))(p+q−1)=36)),(((p−q)(((p+q−1)/q^2 ))=36 (only possible case))) :}   ^★ q∣p⇒q=p [∵ p,q∈P]         p=q⇒(p/q)=1 and this make^★ false.  ^(★★)   ((p−q)/q^2 ) is impossible as p,q∈P    p−q=k ∧ ((p+q−1)/q^2 )=((36)/k) ; k∣36  p−q=k_((i))  ∧ p+q=((36q^2 )/k)+1_((ii))   (ii)−(i):  2q=(((36q^2 )/k)+1)−k  2qk=36q^2 +k−k^2   36q^2 −2kq+k−k^2 =0  q=((2k±(√(4k^2 −4(36)(k−k^2 ))))/(72))     =((2k±2(√(k^2 −36k+36k^2 )))/(72))     =((k±(√(37k^2 −36k)))/(36))∈P ∧ k∣36  Possible candidates for k:  ±1,±2,±3,±4,±6,±9,±12,±18,±36  Only successful candidate for k is 36  k=36⇒ { ((q=7,p=43)),((q=−5,p=31)) :}

SUCCESSFULApproachpp=qqp2q2=36q2+pqp2q2(pq)=36q2(pq)(p+q1)=36q2(pq)(p+q1)q2=36{(pqq)(p+q1q)=36(pqq2)(p+q1)=36(pq)(p+q1q2)=36{(pq1)(pq+q1q)=36(false)(pqq2)(p+q1)=36(pq)(p+q1q2)=36(onlypossiblecase)qpq=p[p,qP]p=qpq=1andthismakefalse.pqq2isimpossibleasp,qPpq=kp+q1q2=36k;k36pq=k(i)p+q=36q2k+1(ii)(ii)(i):2q=(36q2k+1)k2qk=36q2+kk236q22kq+kk2=0q=2k±4k24(36)(kk2)72=2k±2k236k+36k272=k±37k236k36Pk36Possiblecandidatesfork:±1,±2,±3,±4,±6,±9,±12,±18,±36Onlysuccessfulcandidateforkis36k=36{q=7,p=43q=5,p=31

Commented by Tawa11 last updated on 25/Jul/22

Wow, God bless you sir.

Wow,Godblessyousir.

Commented by MathematicalUser2357 last updated on 26/Feb/25

It′s so funny where: q such that p^2 −p=37

Itssofunnywhere:qsuchthatp2p=37

Answered by Rasheed.Sindhi last updated on 24/Jul/22

p^2 −p=37q^2 −q ;       p,q∈P   p(p−1)=q(37q−1)  p=q ∨ p∣(37q−1)  •p=q ∧ p−1=37q−1⇒p−1=37p−1     ⇒p=0∉P    ∴ p≠q     • p∣(37q−1) ∧ p,q satisfy the given relation.     q=2⇒37q−1=73⇒p=73   ×     q=3⇒37q−1=110⇒p=2,5,11 ×     q=5⇒37q−1=184⇒p=2,23 ×     q=7^(✓) ⇒37q−1=258⇒p=2^(×) ,3^(×) ,43^(✓)   (p,q)=(43,7)  Continue

p2p=37q2q;p,qPp(p1)=q(37q1)p=qp(37q1)p=qp1=37q1p1=37p1p=0Ppqp(37q1)p,qsatisfythegivenrelation.q=237q1=73p=73×q=337q1=110p=2,5,11×q=537q1=184p=2,23×q=737q1=258p=2×,3×,43(p,q)=(43,7)Continue

Answered by Rasheed.Sindhi last updated on 24/Jul/22

 p^2   −  p    =   37q^2   −  q   p^2   −  p  + q −  37q^2  = 0  p=((1±(√(1−4q(1−37q))))/2)  p=((1±(√(148q^2 −4q+1)))/2)  p=((1±(√((37(148q^2 )−37(4q)+37)/(37))))/2)  p=((1±(√((74^2 q^2 −148q+1+37−1)/(37))))/2)  p=((1±(√((74^2 q^2 +148q+1−296q+37−1)/(37))))/2)  p=((1±(√(((74q+1)^2 +36−296q)/(37))))/2)  p=((1±(√(((74q+1)^2 −4(74q−9))/(37))))/2)  △=(((74q+1)^2 −4(74q−9))/(37))   is perfect square integer.  For q=7 , △ is 85^2    q=7⇒p=43   .o.......

p2p=37q2qp2p+q37q2=0p=1±14q(137q)2p=1±148q24q+12p=1±37(148q2)37(4q)+37372p=1±742q2148q+1+371372p=1±742q2+148q+1296q+371372p=1±(74q+1)2+36296q372p=1±(74q+1)24(74q9)372=(74q+1)24(74q9)37isperfectsquareinteger.Forq=7,is852q=7p=43.o.......

Commented by Tawa11 last updated on 24/Jul/22

God bless you sir. I appreciate.

Godblessyousir.Iappreciate.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com