Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 174096 by mnjuly1970 last updated on 24/Jul/22

     f(x)= ax^( 2) + bx +c  is given        a ≠ b ≠ c  , a , b , c ∈ R          a≠0   and   :          f(ax + b )=f (bx + c)        find :   (1/2) (f(b)  − f(a ))=?

$$ \\ $$$$\:\:\:{f}\left({x}\right)=\:{ax}^{\:\mathrm{2}} +\:{bx}\:+{c}\:\:{is}\:{given} \\ $$$$\:\:\:\:\:\:{a}\:\neq\:{b}\:\neq\:{c}\:\:,\:{a}\:,\:{b}\:,\:{c}\:\in\:\mathbb{R}\: \\ $$$$\:\:\:\:\:\:\:{a}\neq\mathrm{0}\:\:\:{and}\:\:\:: \\ $$$$\:\:\:\:\:\:\:\:{f}\left({ax}\:+\:{b}\:\right)={f}\:\left({bx}\:+\:{c}\right) \\ $$$$\:\:\:\:\:\:{find}\::\:\:\:\frac{\mathrm{1}}{\mathrm{2}}\:\left({f}\left({b}\right)\:\:−\:{f}\left({a}\:\right)\right)=? \\ $$

Answered by mahdipoor last updated on 24/Jul/22

if   f(x)=axx+bx+c   and     Max/min f=f(((−b)/(2a)))  f(m)=f(n)⇔((m+n)/2)=((−b)/(2a))  ⇒⇒(((ax+b)+(bx+c))/2)=((−b)/(2a))⇒  a+b=0  and   b+c=((−b)/a) ⇒  a=k    b=−k    c=1+k ⇒   f(x)=kxx−kx+1+k   (1/2)([k(−k)^2 −k(−k)+1+k]−  [k(k^2 )−k(k)+1+k])=k^2 =a^2

$${if}\:\:\:{f}\left({x}\right)={axx}+{bx}+{c}\:\:\:{and}\:\:\: \\ $$$${Max}/{min}\:{f}={f}\left(\frac{−{b}}{\mathrm{2}{a}}\right) \\ $$$${f}\left({m}\right)={f}\left({n}\right)\Leftrightarrow\frac{{m}+{n}}{\mathrm{2}}=\frac{−{b}}{\mathrm{2}{a}} \\ $$$$\Rightarrow\Rightarrow\frac{\left({ax}+{b}\right)+\left({bx}+{c}\right)}{\mathrm{2}}=\frac{−{b}}{\mathrm{2}{a}}\Rightarrow \\ $$$${a}+{b}=\mathrm{0}\:\:{and}\:\:\:{b}+{c}=\frac{−{b}}{{a}}\:\Rightarrow \\ $$$${a}={k}\:\:\:\:{b}=−{k}\:\:\:\:{c}=\mathrm{1}+{k}\:\Rightarrow\: \\ $$$${f}\left({x}\right)={kxx}−{kx}+\mathrm{1}+{k}\: \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left(\left[{k}\left(−{k}\right)^{\mathrm{2}} −{k}\left(−{k}\right)+\mathrm{1}+{k}\right]−\right. \\ $$$$\left.\left[{k}\left({k}^{\mathrm{2}} \right)−{k}\left({k}\right)+\mathrm{1}+{k}\right]\right)={k}^{\mathrm{2}} ={a}^{\mathrm{2}} \\ $$

Commented by mnjuly1970 last updated on 24/Jul/22

thank you master ..faghat = a^( 2)       typo...

$${thank}\:{you}\:{master}\:..{faghat}\:=\:{a}^{\:\mathrm{2}} \\ $$$$\:\:\:\:{typo}... \\ $$

Commented by mahdipoor last updated on 24/Jul/22

tnx , i edited

$${tnx}\:,\:{i}\:{edited}\: \\ $$

Answered by cortano1 last updated on 25/Jul/22

f(ax+b)=a(ax+b)^2 +b(ax+b)+c  f(bx+c)=a(bx+c)^2 +b(bx+c)+c   { ((f(ax+b)=a^3 x^2 +2a^2 bx+ab^2 +abx+b^2 +c)),((f(bx+c)=ab^2 x^2 +2abcx+ac^2 +b^2 x+bc+c)) :}    { ((a^2 =b^2 ⇒ { ((a=b(rejected))),((a=−b)) :})),((2a^2 b+ab=b^2 +2abc)),((ab^2 +b^2 +c=ac^2 +bc+c)) :}  for a=−b ⇒ { ((−2a^3 −a^2 =a^2 −2a^2 c)),((a^3 +a^2 +c=ac−ac+c)) :}  ⇒a^2 (a+1)=0⇒a=−1 , b=1 ,   ⇒2−1=1−2c ; c=0  ∴ f(x)=−x^2 +x   { ((f(b)=f(1)=−1+1=0)),((f(a)=f(−1)=−1−1=−2)) :}  ⇒ (1/2)[ f(b)−f(a) ]= (1/2)(0−(−2))=1

$${f}\left({ax}+{b}\right)={a}\left({ax}+{b}\right)^{\mathrm{2}} +{b}\left({ax}+{b}\right)+{c} \\ $$$${f}\left({bx}+{c}\right)={a}\left({bx}+{c}\right)^{\mathrm{2}} +{b}\left({bx}+{c}\right)+{c} \\ $$$$\begin{cases}{{f}\left({ax}+{b}\right)={a}^{\mathrm{3}} {x}^{\mathrm{2}} +\mathrm{2}{a}^{\mathrm{2}} {bx}+{ab}^{\mathrm{2}} +{abx}+{b}^{\mathrm{2}} +{c}}\\{{f}\left({bx}+{c}\right)={ab}^{\mathrm{2}} {x}^{\mathrm{2}} +\mathrm{2}{abcx}+{ac}^{\mathrm{2}} +{b}^{\mathrm{2}} {x}+{bc}+{c}}\end{cases} \\ $$$$\:\begin{cases}{{a}^{\mathrm{2}} ={b}^{\mathrm{2}} \Rightarrow\begin{cases}{{a}={b}\left({rejected}\right)}\\{{a}=−{b}}\end{cases}}\\{\mathrm{2}{a}^{\mathrm{2}} {b}+{ab}={b}^{\mathrm{2}} +\mathrm{2}{abc}}\\{{ab}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}={ac}^{\mathrm{2}} +{bc}+{c}}\end{cases} \\ $$$${for}\:{a}=−{b}\:\Rightarrow\begin{cases}{−\mathrm{2}{a}^{\mathrm{3}} −{a}^{\mathrm{2}} ={a}^{\mathrm{2}} −\mathrm{2}{a}^{\mathrm{2}} {c}}\\{{a}^{\mathrm{3}} +{a}^{\mathrm{2}} +{c}={ac}−{ac}+{c}}\end{cases} \\ $$$$\Rightarrow{a}^{\mathrm{2}} \left({a}+\mathrm{1}\right)=\mathrm{0}\Rightarrow{a}=−\mathrm{1}\:,\:{b}=\mathrm{1}\:,\: \\ $$$$\Rightarrow\mathrm{2}−\mathrm{1}=\mathrm{1}−\mathrm{2}{c}\:;\:{c}=\mathrm{0} \\ $$$$\therefore\:{f}\left({x}\right)=−{x}^{\mathrm{2}} +{x} \\ $$$$\begin{cases}{{f}\left({b}\right)={f}\left(\mathrm{1}\right)=−\mathrm{1}+\mathrm{1}=\mathrm{0}}\\{{f}\left({a}\right)={f}\left(−\mathrm{1}\right)=−\mathrm{1}−\mathrm{1}=−\mathrm{2}}\end{cases} \\ $$$$\Rightarrow\:\frac{\mathrm{1}}{\mathrm{2}}\left[\:{f}\left({b}\right)−{f}\left({a}\right)\:\right]=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{0}−\left(−\mathrm{2}\right)\right)=\mathrm{1} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com