Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 174117 by Mathspace last updated on 25/Jul/22

find ∫_0 ^1  (dx/(1+x^n )) interms of  ψ (digamma)

$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{dx}}{\mathrm{1}+{x}^{{n}} }\:{interms}\:{of} \\ $$$$\psi\:\left({digamma}\right) \\ $$

Answered by Mathspace last updated on 25/Jul/22

∫_0 ^1 (dx/(1+x^n ))=∫_0 ^1 Σ_(p=0) ^∞ (−1)^p x^(np) dx  =Σ_(p=0) ^∞ (−1)^p ∫_0 ^1 x^(np) dx  =Σ_(p=0) ^∞ (((−1)^p )/(np+1))  =Σ_(k=0) ^∞ (1/(2nk+1))−Σ_(k=0) ^∞ (1/((2k+1)n+1))  =Σ_(k=0) ^∞ ((1/(2nk+1))−(1/(2nk+n+1)))  =nΣ_(k=0) ^∞ (1/((2nk+1)(2nk+n+1)))  =(n/(4n^2 ))Σ_(k=0) ^∞ (1/((k+(1/(2n)))(k+((n+1)/(2n)))))  =(1/(4n))(ψ(((n+1)/(2n)))−ψ((1/(2n))))×(1/(((n+1)/(2n))−(1/(2n))))  =(1/(2n)){ψ((1/(2n))+(1/2))−ψ((1/(2n)))}

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{\mathrm{1}+{x}^{{n}} }=\int_{\mathrm{0}} ^{\mathrm{1}} \sum_{{p}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{p}} {x}^{{np}} {dx} \\ $$$$=\sum_{{p}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{p}} \int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{np}} {dx} \\ $$$$=\sum_{{p}=\mathrm{0}} ^{\infty} \frac{\left(−\mathrm{1}\right)^{{p}} }{{np}+\mathrm{1}} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\mathrm{2}{nk}+\mathrm{1}}−\sum_{{k}=\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\left(\mathrm{2}{k}+\mathrm{1}\right){n}+\mathrm{1}} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{\infty} \left(\frac{\mathrm{1}}{\mathrm{2}{nk}+\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{2}{nk}+{n}+\mathrm{1}}\right) \\ $$$$={n}\sum_{{k}=\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\left(\mathrm{2}{nk}+\mathrm{1}\right)\left(\mathrm{2}{nk}+{n}+\mathrm{1}\right)} \\ $$$$=\frac{{n}}{\mathrm{4}{n}^{\mathrm{2}} }\sum_{{k}=\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\left({k}+\frac{\mathrm{1}}{\mathrm{2}{n}}\right)\left({k}+\frac{{n}+\mathrm{1}}{\mathrm{2}{n}}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}{n}}\left(\psi\left(\frac{{n}+\mathrm{1}}{\mathrm{2}{n}}\right)−\psi\left(\frac{\mathrm{1}}{\mathrm{2}{n}}\right)\right)×\frac{\mathrm{1}}{\frac{{n}+\mathrm{1}}{\mathrm{2}{n}}−\frac{\mathrm{1}}{\mathrm{2}{n}}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{n}}\left\{\psi\left(\frac{\mathrm{1}}{\mathrm{2}{n}}+\frac{\mathrm{1}}{\mathrm{2}}\right)−\psi\left(\frac{\mathrm{1}}{\mathrm{2}{n}}\right)\right\} \\ $$

Commented by aleks041103 last updated on 25/Jul/22

Yes, this is correct! I made an extremely   big mistake of doing whatever I want with  nonconverging integrals...

$${Yes},\:{this}\:{is}\:{correct}!\:{I}\:{made}\:{an}\:{extremely}\: \\ $$$${big}\:{mistake}\:{of}\:{doing}\:{whatever}\:{I}\:{want}\:{with} \\ $$$${nonconverging}\:{integrals}... \\ $$

Commented by Mathspace last updated on 25/Jul/22

your method is correct by you hsve commited  a error of calculus nevermind sir

$${your}\:{method}\:{is}\:{correct}\:{by}\:{you}\:{hsve}\:{commited} \\ $$$${a}\:{error}\:{of}\:{calculus}\:{nevermind}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com