All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 174117 by Mathspace last updated on 25/Jul/22
find∫01dx1+xnintermsofψ(digamma)
Answered by Mathspace last updated on 25/Jul/22
∫01dx1+xn=∫01∑p=0∞(−1)pxnpdx=∑p=0∞(−1)p∫01xnpdx=∑p=0∞(−1)pnp+1=∑k=0∞12nk+1−∑k=0∞1(2k+1)n+1=∑k=0∞(12nk+1−12nk+n+1)=n∑k=0∞1(2nk+1)(2nk+n+1)=n4n2∑k=0∞1(k+12n)(k+n+12n)=14n(ψ(n+12n)−ψ(12n))×1n+12n−12n=12n{ψ(12n+12)−ψ(12n)}
Commented by aleks041103 last updated on 25/Jul/22
Yes,thisiscorrect!ImadeanextremelybigmistakeofdoingwhateverIwantwithnonconvergingintegrals...
Commented by Mathspace last updated on 25/Jul/22
yourmethodiscorrectbyyouhsvecommitedaerrorofcalculusnevermindsir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com