Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 174127 by mnjuly1970 last updated on 26/Jul/22

     Q:     p , q , r    are  roots of       x^( 3)  −7x^( 2) =(4−x)(x+2)       find  the value of :     K = (1/( ((qr))^(1/3) ))  + (1/( ((pr))^(1/3) ))  + (1/( ((pq))^(1/3) )) = ?

Q:p,q,rarerootsofx37x2=(4x)(x+2)findthevalueof:K=1qr3+1pr3+1pq3=?

Answered by Rasheed.Sindhi last updated on 26/Jul/22

x^3 +5x^2 =8x−15−x^2   x^3 +6x^2 −8x+15=0  p+q+r=−6 , pq+qr+rp=−8 , pqr=−15   K = (((p)^(1/3)  +(q)^(1/3)  +(r)^(1/3)   )/( ((pqr))^(1/3)  )) ⇒(p)^(1/3)  +(q)^(1/3)  +(r)^(1/3)  = ((pqr))^(1/3)  K     K^3  = ((((p)^(1/3)  +(q)^(1/3)  +(r)^(1/3)   )/( ((pqr))^(1/3) )))^3     (a+b+c)^3 =a^3 +b^3 +c^3 +3(ab+bc+ca)(a+b+c)−3abc  =((p+q+r+3(((pq))^(1/3)  +((qr))^(1/3)  +((rp))^(1/3)  )((p)^(1/3)  +(q)^(1/3)  +(r)^(1/3)  )−3((pqr))^(1/3)  )/(pqr))  =((p+q+r+3(((pq))^(1/3)  +((qr))^(1/3)  +((rp))^(1/3)  )(((pqr))^(1/3)  K )−3((pqr))^(1/3)  )/(pqr))  =((p+q+r+3(((((pqr))^(1/3)  )/( (r)^(1/3) ))+((((pqr))^(1/3)  )/( (p)^(1/3) )) +((((pqr))^(1/3)  )/( (q)^(1/3) )) )(((pqr))^(1/3)  K )−3((pqr))^(1/3)  )/(pqr))  =((p+q+r+3(((pqr))^(1/3)  )^2 (((1 )/( (r)^(1/3) ))+((1 )/( (p)^(1/3) )) +((1 )/( (q)^(1/3) )) )^★ (K )−3((pqr))^(1/3)  )/(pqr))  K^3 (pqr)=p+q+r+3(((pqr))^(1/3)  )^2 (A )(K )−3((pqr))^(1/3)     determinant (((K^3 (pqr)=p+q+r+3(((pqr))^(1/3)  )^2 (A )(K )−3((pqr))^(1/3)  )))...(I)  ^★ A=((1 )/( (r)^(1/3) ))+((1 )/( (p)^(1/3) )) +((1 )/( (q)^(1/3) ))  A^3 =(1/r)+(1/p)+(1/q)+3((1/( ((pq))^(1/3) ))+(1/( ((qr))^(1/3) ))+(1/( ((rp))^(1/3) )))(a)−(3/( ((pqr))^(1/3) ))  A^3 =(1/r)+(1/p)+(1/q)+3(K)(A)−(3/( ((pqr))^(1/3) ))  A^3 =((pq+qr+rp)/(pqr))+3(K)(A)−(3/( ((pqr))^(1/3) ))     =((−8)/(−15))+3KA−(3/( ((−15))^(1/3) ))  K=((A^3 −(8/(15))+(3/( ((−15))^(1/3) )))/(3A))   determinant (((K=((A^3 −(8/(15))+(3/( ((−15))^(1/3) )))/(3A)))))....(II)  Solving (I) & (II) (eqns in boxes)   simultaneously we can determine K     Too complicated....

x3+5x2=8x15x2x3+6x28x+15=0p+q+r=6,pq+qr+rp=8,pqr=15K=p3+q3+r3pqr3p3+q3+r3=pqr3KK3=(p3+q3+r3pqr3)3(a+b+c)3=a3+b3+c3+3(ab+bc+ca)(a+b+c)3abc=p+q+r+3(pq3+qr3+rp3)(p3+q3+r3)3pqr3pqr=p+q+r+3(pq3+qr3+rp3)(pqr3K)3pqr3pqr=p+q+r+3(pqr3r3+pqr3p3+pqr3q3)(pqr3K)3pqr3pqr=p+q+r+3(pqr3)2(1r3+1p3+1q3)(K)3pqr3pqrK3(pqr)=p+q+r+3(pqr3)2(A)(K)3pqr3K3(pqr)=p+q+r+3(pqr3)2(A)(K)3pqr3...(I)A=1r3+1p3+1q3A3=1r+1p+1q+3(1pq3+1qr3+1rp3)(a)3pqr3A3=1r+1p+1q+3(K)(A)3pqr3A3=pq+qr+rppqr+3(K)(A)3pqr3=815+3KA3153K=A3815+31533AK=A3815+31533A....(II)Solving(I)&(II)(eqnsinboxes)simultaneouslywecandetermineKToocomplicated....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com