All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 174127 by mnjuly1970 last updated on 26/Jul/22
Q:p,q,rarerootsofx3−7x2=(4−x)(x+2)findthevalueof:K=1qr3+1pr3+1pq3=?
Answered by Rasheed.Sindhi last updated on 26/Jul/22
x3+5x2=8x−15−x2x3+6x2−8x+15=0p+q+r=−6,pq+qr+rp=−8,pqr=−15K=p3+q3+r3pqr3⇒p3+q3+r3=pqr3KK3=(p3+q3+r3pqr3)3(a+b+c)3=a3+b3+c3+3(ab+bc+ca)(a+b+c)−3abc=p+q+r+3(pq3+qr3+rp3)(p3+q3+r3)−3pqr3pqr=p+q+r+3(pq3+qr3+rp3)(pqr3K)−3pqr3pqr=p+q+r+3(pqr3r3+pqr3p3+pqr3q3)(pqr3K)−3pqr3pqr=p+q+r+3(pqr3)2(1r3+1p3+1q3)★(K)−3pqr3pqrK3(pqr)=p+q+r+3(pqr3)2(A)(K)−3pqr3K3(pqr)=p+q+r+3(pqr3)2(A)(K)−3pqr3...(I)★A=1r3+1p3+1q3A3=1r+1p+1q+3(1pq3+1qr3+1rp3)(a)−3pqr3A3=1r+1p+1q+3(K)(A)−3pqr3A3=pq+qr+rppqr+3(K)(A)−3pqr3=−8−15+3KA−3−153K=A3−815+3−1533AK=A3−815+3−1533A....(II)Solving(I)&(II)(eqnsinboxes)simultaneouslywecandetermineKToocomplicated....
Terms of Service
Privacy Policy
Contact: info@tinkutara.com