All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 174152 by cortano1 last updated on 26/Jul/22
limx→01−sin(π2cosx+2x)5x2=?
Answered by CElcedricjunior last updated on 26/Jul/22
limx→01−sin(π2cosx+2x)5x2=00=FIenappliquantl′hospitalonalimx→0−(−π2sinx+2)cos(π2cosx+2x)10x=limx→0(π2cosx)cos(π2cosx+2x)−(π2sinx−2)(−π2sinx+2)sin(π2cosx+2x)10=0+(π2×0−2)2sin(π2×1+2×0)10=410=25d′ou`limx→01−sin(π2cosx+2x)5x2=25.....lecel´ebre`cedricjunior........
Answered by a.lgnaoui last updated on 26/Jul/22
sin(π2cosx+2x)=sin(π2cosx)cos2x+cos(π2cosx)sin2xL=limx→01−[sin(π2cosx)cos2x+cos(π2cosx)sin2x]5x2=limx→0[15x2−(π2+2cosπ2sinx5x2)]limx→0[15x2−π25x2];limx→0sinxx=1L=limx→0(2−π10x2)=−∞
Terms of Service
Privacy Policy
Contact: info@tinkutara.com