Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 174152 by cortano1 last updated on 26/Jul/22

    lim_(x→0)  ((1−sin ((π/2)cos x+2x))/(5x^2 )) =?

limx01sin(π2cosx+2x)5x2=?

Answered by CElcedricjunior last updated on 26/Jul/22

lim_(x→0) ((1−sin((𝛑/2)cosx+2x))/(5x^2 ))=(0/0)=FI  en appliquant l′hospital on a  lim_(x→0) ((−(−(𝛑/2)sinx+2)cos((𝛑/2)cosx+2x))/(10x))  =lim_(x→0) ((((𝛑/2)cosx)cos((𝛑/2)cosx+2x)−((𝛑/2)sinx−2)(−(𝛑/2)sinx+2)sin((𝛑/2)cosx+2x))/(10))  =((0+((𝛑/2)×0−2)^2 sin((𝛑/2)×1+2×0))/(10))  =(4/(10))=(2/5)  d′ou^�   lim_(x→0) ((1−sin((π/2)cosx+2x))/(5x^2 ))=(2/5)  .....le ce^� le^� bre cedric junior........

limx01sin(π2cosx+2x)5x2=00=FIenappliquantlhospitalonalimx0(π2sinx+2)cos(π2cosx+2x)10x=limx0(π2cosx)cos(π2cosx+2x)(π2sinx2)(π2sinx+2)sin(π2cosx+2x)10=0+(π2×02)2sin(π2×1+2×0)10=410=25dou`limx01sin(π2cosx+2x)5x2=25.....lecel´ebre`cedricjunior........

Answered by a.lgnaoui last updated on 26/Jul/22

sin ((π/2)cos x+2x)=sin ((π/2)cos x)cos 2x+cos ((π/2)cos x)sin 2x  L=lim_(x→0) ((1−[sin ((π/2)cos x)cos 2x+cos ((π/2)cos x)sin 2x])/(5x^2 ))  =lim_(x→0) [(1/(5x^2 ))−((((π/2)+2cos (π/2)sin x)/(5x^2 )))]  lim_(x→0) [(1/(5x^2 ))−((π/2)/(5x^2 ))]          ; lim_(x→0) ((sin x)/x)=1  L=lim_(x→0) (((2−π)/(10x^2 )))=−∞

sin(π2cosx+2x)=sin(π2cosx)cos2x+cos(π2cosx)sin2xL=limx01[sin(π2cosx)cos2x+cos(π2cosx)sin2x]5x2=limx0[15x2(π2+2cosπ2sinx5x2)]limx0[15x2π25x2];limx0sinxx=1L=limx0(2π10x2)=

Terms of Service

Privacy Policy

Contact: info@tinkutara.com