Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 174185 by nadovic last updated on 26/Jul/22

The circle x^2 +y^2 −2x−4y−20=0 is  inscribed in a square. One vertex  of the square is (−4, 7). Find the  coordinates of the other vertices.

$$\mathrm{The}\:\mathrm{circle}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{4}{y}−\mathrm{20}=\mathrm{0}\:\mathrm{is} \\ $$$$\mathrm{inscribed}\:\mathrm{in}\:\mathrm{a}\:\mathrm{square}.\:\mathrm{One}\:\mathrm{vertex} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{square}\:\mathrm{is}\:\left(−\mathrm{4},\:\mathrm{7}\right).\:\mathrm{Find}\:\mathrm{the} \\ $$$$\mathrm{coordinates}\:\mathrm{of}\:\mathrm{the}\:\mathrm{other}\:\mathrm{vertices}. \\ $$

Answered by Cesar1994 last updated on 26/Jul/22

      x^2 +y^2 −2x−4y−20=0 ⇔ (x−1)^2  +(y−2)^2 =20+1+4                                                      ⇔ (x−1)^2  +(y−2)^2 =25  the circle′s center is (1, 2)  (((−3−7)/(6−(−4))))(((−3−7)/(−4−6)))=((−10)/(10))(((−10)/(−10)))=−1  the diametrically oposite vertex to A(−4,7) is B(1+5, 2−5)=B(6,−3)  the others vertices are C(1+5, 2+5)=C(6,7) and D(1−5,2−5)=D(−4,−3)  evaluating each point in (1) it is verified that they are on the circumference  then prove that the diagonals AB and CD are perpendiculars one to the other  (((−3−7)/(6−(−4))))(((−3−7)/(−4−6)))=((−10)/(10))(((−10)/(−10)))=−1  ∴ the ABCD is rhombus  then side AC is horizontal and side BC is vertical side, so they are perpendicular  ∴ ABCD is a square ■

$$ \\ $$$$ \\ $$$$ \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{4}{y}−\mathrm{20}=\mathrm{0}\:\Leftrightarrow\:\left({x}−\mathrm{1}\right)^{\mathrm{2}} \:+\left({y}−\mathrm{2}\right)^{\mathrm{2}} =\mathrm{20}+\mathrm{1}+\mathrm{4} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Leftrightarrow\:\left({x}−\mathrm{1}\right)^{\mathrm{2}} \:+\left({y}−\mathrm{2}\right)^{\mathrm{2}} =\mathrm{25} \\ $$$${the}\:{circle}'{s}\:{center}\:{is}\:\left(\mathrm{1},\:\mathrm{2}\right) \\ $$$$\left(\frac{−\mathrm{3}−\mathrm{7}}{\mathrm{6}−\left(−\mathrm{4}\right)}\right)\left(\frac{−\mathrm{3}−\mathrm{7}}{−\mathrm{4}−\mathrm{6}}\right)=\frac{−\mathrm{10}}{\mathrm{10}}\left(\frac{−\mathrm{10}}{−\mathrm{10}}\right)=−\mathrm{1} \\ $$$${the}\:{diametrically}\:{oposite}\:{vertex}\:{to}\:{A}\left(−\mathrm{4},\mathrm{7}\right)\:{is}\:{B}\left(\mathrm{1}+\mathrm{5},\:\mathrm{2}−\mathrm{5}\right)={B}\left(\mathrm{6},−\mathrm{3}\right) \\ $$$${the}\:{others}\:{vertices}\:{are}\:{C}\left(\mathrm{1}+\mathrm{5},\:\mathrm{2}+\mathrm{5}\right)={C}\left(\mathrm{6},\mathrm{7}\right)\:{and}\:{D}\left(\mathrm{1}−\mathrm{5},\mathrm{2}−\mathrm{5}\right)={D}\left(−\mathrm{4},−\mathrm{3}\right) \\ $$$${evaluating}\:{each}\:{point}\:{in}\:\left(\mathrm{1}\right)\:{it}\:{is}\:{verified}\:{that}\:{they}\:{are}\:{on}\:{the}\:{circumference} \\ $$$${then}\:{prove}\:{that}\:{the}\:{diagonals}\:{AB}\:{and}\:{CD}\:{are}\:{perpendiculars}\:{one}\:{to}\:{the}\:{other} \\ $$$$\left(\frac{−\mathrm{3}−\mathrm{7}}{\mathrm{6}−\left(−\mathrm{4}\right)}\right)\left(\frac{−\mathrm{3}−\mathrm{7}}{−\mathrm{4}−\mathrm{6}}\right)=\frac{−\mathrm{10}}{\mathrm{10}}\left(\frac{−\mathrm{10}}{−\mathrm{10}}\right)=−\mathrm{1} \\ $$$$\therefore\:{the}\:{ABCD}\:{is}\:{rhombus} \\ $$$${then}\:{side}\:{AC}\:{is}\:{horizontal}\:{and}\:{side}\:{BC}\:{is}\:{vertical}\:{side},\:{so}\:{they}\:{are}\:{perpendicular} \\ $$$$\therefore\:{ABCD}\:{is}\:{a}\:{square}\:\blacksquare \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com