Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 174194 by mokys last updated on 26/Jul/22

Answered by Mathspace last updated on 27/Jul/22

1)∫_0 ^(π/2) sin^(10) x cos^(10) x dx  we kmow ∫_0 ^(π/2) sin^(2p−1) x cos^(2q−1) xdx  =(1/2)B(p,q)=((Γ(p).Γ(q))/(Γ(p+q)))  we get p=((11)/2) and q=((11)/2)  ⇒∫_0 ^(π/2) sin^(10) x cos^(10) xdx  =(1/2)×((Γ^2 (((11)/2)))/(Γ(11)))=(1/(2.10!))Γ^2 (((11)/2))  rest to calculate Γ(((11)/2))  ...

1)0π2sin10xcos10xdxwekmow0π2sin2p1xcos2q1xdx=12B(p,q)=Γ(p).Γ(q)Γ(p+q)wegetp=112andq=1120π2sin10xcos10xdx=12×Γ2(112)Γ(11)=12.10!Γ2(112)resttocalculateΓ(112)...

Commented by aleks041103 last updated on 27/Jul/22

I(p,q)=∫_0 ^( π/2) sin^(2p−1) x cos^(2q−1) x dx  t=sin^2 x  dt=2sinx cosx dx  I(p,q)=(1/2)∫_0 ^( π/2) (sin^2 x)^(p−1)  (cos^2 x)^(q−1) (2sinx cosx dx)=  =(1/2)∫_0 ^( 1) t^(p−1) (1−t)^(q−1) dt=(1/2)B(p,q)  ⇒∫_0 ^( π/2) sin^α x cos^β x dx=(1/2)B(((1+α)/2),((1+β)/2))  ⇒∫_0 ^( π/2) sin^α x cos^β x dx=((Γ(((1+α)/2))Γ(((1+β)/2)))/(2Γ(1+((α+β)/2))))  ⇒∫_0 ^( π/2) sin^(10) x cos^(10) x dx=((Γ(((11)/2))^2 )/(2Γ(11)))=((((9/2)!)^2 )/(2.10!))  ((9/2))!=(9/2) ((7/2))!=...=((9.7.5.3)/(2.2.2.2)) ((1/2))!=((9.7.5.3)/(32))(√π)  ⇒((9/2)!)^2 /(2.10!)=((893025)/(2048.3628800))π=((893025)/(7431782400))π=  =((35721π)/(297271296))=((441π)/(3670016))=((63π)/(524288))  ⇒∫_0 ^( π/2) sin^α x cos^β x dx=((63π)/(524288))

I(p,q)=0π/2sin2p1xcos2q1xdxt=sin2xdt=2sinxcosxdxI(p,q)=120π/2(sin2x)p1(cos2x)q1(2sinxcosxdx)==1201tp1(1t)q1dt=12B(p,q)0π/2sinαxcosβxdx=12B(1+α2,1+β2)0π/2sinαxcosβxdx=Γ(1+α2)Γ(1+β2)2Γ(1+α+β2)0π/2sin10xcos10xdx=Γ(112)22Γ(11)=((9/2)!)22.10!(92)!=92(72)!=...=9.7.5.32.2.2.2(12)!=9.7.5.332π((9/2)!)2/(2.10!)=8930252048.3628800π=8930257431782400π==35721π297271296=441π3670016=63π5242880π/2sinαxcosβxdx=63π524288

Answered by Mathspace last updated on 27/Jul/22

3)∫_(−5) ^1 [x]dx =_(x=−5+t)  ∫_0 ^6 [t−5]dt  =∫_0 ^6 ([t]−5)dt  =∫_0 ^6 [t]dt−30  =Σ_(k=0) ^5 ∫_k ^(k+1) kdt−30  =Σ_(k=0) ^5 k −30  =((5.6)/2)−30 =15−30=−15

3)51[x]dx=x=5+t06[t5]dt=06([t]5)dt=06[t]dt30=k=05kk+1kdt30=k=05k30=5.6230=1530=15

Answered by Mathspace last updated on 27/Jul/22

4) ∫_(−2) ^2 [x]dx=_(x=−2+t)  ∫_0 ^4 [−2+t]dt  =∫_0 ^4 (−2+[t])dt  =−8+∫_0 ^4 [t]dt  =−8+Σ_(k=0) ^3 ∫_k ^(k+1) kdt  =−8+Σ_(k=1) ^3 k  =−8+((3.4)/2)=−8+6=2

4)22[x]dx=x=2+t04[2+t]dt=04(2+[t])dt=8+04[t]dt=8+k=03kk+1kdt=8+k=13k=8+3.42=8+6=2

Answered by Mathspace last updated on 27/Jul/22

2)∫_(−3) ^3 {x}dx=∫_(−3) ^3 (x−[x])dx  =∫_(−3) ^3 xdx(→0)−∫_(−3) ^3 [x]dx  =_(x=−3+t)   −∫_o ^6 (−3+[t])dt  =18−Σ_(k=0) ^5 ∫_k ^(k+1) kdt  =18−Σ_(k=1) ^5 k  =18−((5.6)/2)=18−15=3

2)33{x}dx=33(x[x])dx=33xdx(0)33[x]dx=x=3+to6(3+[t])dt=18k=05kk+1kdt=18k=15k=185.62=1815=3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com